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Discrete Fourier Transforms (DFT): Introduction to DFT, definition of DFT and its inverse, matrix
relation to find DFT and IDFT ,Properties of DFT, linearity, circular time shift, circular frequency shift,
circular folding, symmetry of : real valued sequences, real even and odd sequences, DFT of complex
conjugate sequence, multiplication of two DFTs- the circular convolution, Parseval’s theorem, circular

correlation, Digital linear filtering using DFT. Signal segmentation , overlap-save and overlap-add method
Bloom’s Taxonomy | L1 — Remembering, 1.2 — Understanding, 1.3 — Applying, L — 4 Analysing,
Level
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Discrete-Ti1ime Systems

- INDiscrete-Time Sequence 1s a mathematical operation that maps a given
input sequence X[nj] into an output segquence v[n]
yIlnl = T {x[nl} x[Nn]——* TL. > yLrn]
- Example Discrete-Time Systems

— Moving (Running) Average

vinmn] = x[Nn] ~ xX[m — 1] + xXx[Nmn — 2] + x[Nn — 3]
— Maximuim
vin] = max {x[n], x[n — 1], x[n —27%

— Ideal Delay System

yInl = x[n — n_]

ATME College of -
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L. inearity

A linmear system 1s one that obews the principle of
superposition,

T{alx [72 ] + a, x [#2 ]} = a, v, Iln]+ a,yv [n]

where the output of a linear combination of inputs i1s the
same linear combination applied to the individual outputs.
This result means that a complicated system can be
decomposed into a linear combination of elementary
functions whose transformation is known, and then taking
the same linear combination of the results. Linearity also

implies that the behavior of the system i1s independent of
the magnitude of the input.
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Linear Systems

- ILinear System: A system 1s linear 1f and only 1f
TL{x1[Nn] + x_,[N]} = T{x, [n]l} =« T{x_[n]} (additivit v
and

T{ax [n] } = aT {x[n]} (scaling)

- Examples
— TIdeal Delay System

vyin] = x[n — n_]

TA{x1[Nn] +~ x=2[Nn]}F = x,[n —n_] + x,[n — n_]
T{x2[nN]} + Ti{x,[nl} = X, —n_ 1+ X,[Nn —n_]
T {ax [n]} = ax 1[N — n_]
aT {x[n]} — ax 1[N — n_]

ATME College of -
Engineering, Mysuru



ATM E

College of Engineering

Time (Shift) Invariance

A system 1s said to be shift invariant if the only effect caused by
a shift 1in the position of the imput 1s an equal shift 1in the position
of the output, that is

7' ix[n —n, 1y = yvIn — n,]

The magnitude and shape of the output are unchanged, only the
location of the output 1s changed.
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Time-Invariant Systems

Time-Invariant (shift-invariant) Systems
A time shift at the input causes corresponding time-shift at output

—n,1 - T{x[n —n_1}

T{x[n]} = vyI[n

yin] =
- Example
— Sqguare
Delay the input the output is v [n] = (x[n — n ]}2
=2 1 o
yln]l = (x[n1) -
Delay the output gives y[n - nu] = (x[n — n_7)
- Counter Example
— Compressor System
Delay the input the output is v [n] = x[Mn — n 1]
vin] = x[Mn ] _ 1 -
Delay the output gives y[n -n_]= x[M(n —n_)]

ATME College of
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Impulse Response

When the input to a system 1s a single impulse, the output is called
the impulse response. Let /2[72] be the impulse response, given by

T'{d[nly =n[n]

A general sequence f|[x] can be represented as a linear combination
of impulses, since

JS(x) = Ff(x)*=d (x) = J-_m Fu)d (x — w1 )du

SInl= flnl=s[n]l= > J[FI[k]1d[n— k]

= —oc
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Linear Shift-Invariant Systems

Suppose that T {} 1s a linear, shift-invariant system with Z#A[7] as its
impulse response.

Then, using the principle of superpogsition,
i ¥ = = i ¥
T s[mn] = Ti z s[k]o [ _k]j = Z s|k]1T o [n — k]

EF = —oo

= —

and finally after invoking shift-invariance

o )

T {s[nl} = > sk 1T 18 [n — k1) = > slklhln — k]

k= —oxo o= —oo

THi{s[n]y=s[n]l=* hln]

This very important result says that the output of any linear, shift-
imvariant system 1s given by the convolution of the input with the
impulse response of the system. 46

ATME College of -
Engineering, Mysuru




ATM E

College of Engineering

Causality

A system 1s causal if, for every choice of 7o, the output
sequence at the index n = no depends only on the input

sequence values for n < 0.

All physical time-based systems are causal because they are
unable to look into the future and anticipate a signal value
that will occur later.
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Causal System

- Causality

2 swystem is causal it’s output is a function of only the current and
previous samples

- Examples
— Backward Difference
yvin]l] = x[n] — x[n — 1]
- Counter Example

— Forward Difference

win] = x[mn + 1] + x[n]

ATME College of -
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Stability

A system 1s stable in the bounded-input, bounded-output

(BIBO) sense if and only 1t every bounded imput produces a
bounded output sequence.

The input x[7] 1s bounded if there exists a fixed positive finite
wvalue B, such that
|I[H]|£ B _ < oo for all 72

Stability requires that for any possible input sequence there exist
a fixed positive value B, such that

|y[ﬂ]|£ B < oo

¥

ATME College of -
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Stable System

- Stability (1n the sense of bounded-input bounded-output BIBO)

— A system is stable if and only if every bounded imput produces a bounded
output

|x[n]|5 B. < g0 => |y[n]|5 B < o

- Example

— Sqguare
y[nl = (x[n1)°
if input is bounded by |x[n] | < B, <«
output is bounded by |y[n]|$ B2 <
- Counter Example
— Tiog
y[n] =log 10 (x[n1 )
even if input is bounded by |x[n]| < B, < o
output not bounded for x[n] = 0 = y[0o] = log |, (Ix[n]) = —x

ATME College of
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Memory (State)

A system 1s referred to as memorviess 1t the output y[n] at every
value of n depends only on the input x[n] at the same value of .

If the system has no memory, it 1s called a srafic system. Otherwise
it 1s a dyvnamic system.
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Engineering, Mysuru



ATM E

College of Engineering

AN

Departmend of BEE
ISO 9001:2015 Ermitzing Ebbe Erengy

Impulse Response of LL'T1 Systems

Find the impulse response by computing the response to Sfrr].
Swvstems whose impulse responses have only a finite number of
nonzero samples are called finnire-durarion impiulse resporse

(FIR) swvstems.

Swvstems whose impulse responses are of infinite duration are
called infinire-durarion impulse response (ITR) syvstems.

It Aa[r] =— O for 1 << 0O, the system 1s cawescal.

ATME College of -
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Impulse Response for Examples

Find the impulse response by computing the response to o[r]

Ideal Delay System ynl= oLn —n 1 FIR
[ ! . M, < n < Af,
Moving Average System ¥[ml= 4 Ar_ s+ M +1 FIR
L O . otherwise
n 1. o= 0
Aoccumulator System y[nl = 3 6[k]1= 1 ITR
e oo [ O. 1 o= 0O
wvm] =[]
Backward Difference System vinl= 8[n]— &[n — 1] FIR

ATME College of
Engineering, Mysuru
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e X Stable and Causal LTI Systems
Stability Condition for LTI Systems - avtrsmen s tmor-c ot

— Impulse response 1s absolute summable

— Let’s write the output of the system as

AnLTI system 1s BIBO stablle it and only f 1fs tmpulse response vl = |3 o -] = 3 biIein - K]
1s absolutely summable, that s _ Ifthe input s bownded o
‘x[n] | < B,
— Then the output is bounded by

I n| < : h|k
5= Y bl viol < 8, 3 bik]
fat

— The output 1s bounded if the absolute sum 1s finite
* An LTI system is causal if and only if

h[k]=0 for k <0

ATME College of -
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Difference Equations

Aon important subclass of L'TT systems are defined bw
an Nth-order linear constant-coefficient difference egquation:

™ A
E ex v — E] = E B x[rm — ra ]
o o

Often the leading coefficient ao — 1. Then the output v[7s] can be
computed recursively from

N A
] = —Z ea, vime — K] + Z B x[rm — ]

=1 73—

A causal LTI system of thas form can be simulated in
MATILAB using the function £il texr

wv — Fiailter(a,b,x) ;

ATME College of -
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Homogencous Solution

Given the homogeneous equation: > a,v.[n — k] — ©
a [N

Acssume that the homogeneous solution is of the formm

. e

Ay Lree ] = A
then
o
My lre 1 = > --:r.::_:-:"-..”_;Jr = A" (aﬂ}u‘v —+ alf‘u}_—] + - + a L, ) =0
P —
defines an Nth order characteristic polynomaial with roots A1, A2 ... AN
The general solution i1s then a segquence vi|[r2]
o
— L
.1}_:} [?? ] = : : "i?r—r ""'"'?Pr
i
(if the roots are all distinct) The coetficients .4, maw be found frrom the
initial conditions. 63
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Particular Solution

The particular solution 1s required to satisfy the difference equation for a specific
mput signal x[m], = = 0.

o A
Z a, vim — kK] = Z B x[rm — m]
& = 7 -0
To find the particular solution we assume for the solution y,[7] a form that depends
on the form of the specific input signal x[#].

yim]l = w,[nl+ ¥ [m]

ATME College of -
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Fourier representation of signals

@ A discrete—ftirne sirnnusoidal sigrnal xw[7] is obtained by sampling a
continuous-time sinuasoid = (7)) — cos(Z2aFpf7 +— ) at eqgually spaced
prpoints £ — 72 7’, which results in

: > ~ 3 . > o
xlrn] = A cos(2xFonnrd + 6) = o 27T 5= 72 4 @
X —1A JF. =

where £ (H=)

is the fundamental freqguency of = (7)) and F_ is the

sarrrplineg [freqgreericy.

e T'he

where

@ Similarlyv, the

e In this case.

77 is the

rrorvrrializcd freqgirueerncy variable is defined as

sarmplirnig period.

rrorvrialized arnngrular freguency variable is defined as

y 2N

— D
= al

tad e ——— 2P

the discrete sinusoidal signal can be expressed as

xfrz] — A cos(Z2m faorr + 8) — A cos(wagrz + )

ATME College of
Engineering, Mysuru
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Fourier representation of signals

e Periodicity in time: By definition a|n] is periodic if

xfre + N| = ax[n], Vn.
xfrn + N] = A cos(2w forr + 27 folN + 0) = A cos(2w fornr + 0) = =[n]
which is possible if and only if 27 fo /N — 27A., with k£ € Z.

Result

The sequence x[rn] = A cos(2w forr + @) is periodic iff fo = £//N ., that

[

s, fo is a rational number. If £ and NV are a pair of mutually prime
integers, then N is a fundamental period of =[n].

e Periodicity in frequency: We can see that

A cos [(,*..-'U + A 27 ) + ()] — A cos(worz4+ kf_I 27 +60) — A cos{(waoarnn+60)
Result

The sequence x| — A cos(wern + @) is periodic in wg with funda-

mental period 27 and periodic in fn with fundamental period one. &7

ATME College of
Engineering, Mysuru
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Fourier representation of signals

@ All distinct sinusoidal seqguences have freguencies within an
interval of 27 radians. We shall use the faiendamental freguenncy
raArTIg e s

T < Cad < 7w or C) =< &5 = 3w

herefore, if O < wo < 27, the frequencies wo and wo + 772 27t are
indistinguishable in terms of their valunes.

e Since A (’(b.\‘(_.u“[l) —4 ll.,] 4 (I] = A cos(worz + (worro +— ) )., a time
shift is eguivalent to a phase change.

@ 1'he rate of oscillation of a discrete-time sinusoid increases as wo

goes from wo — 0 to wep — 7vr. Yet, as wo increases from we — 7 to
oy — 2. the oscillations become slower. T herefore:
Vicinity of wg — Kk 2 = ILLow freguencies
Vicinity of cog — 7t +— kE 27 —, High freguencies
168
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IDDiscrete complex exponentials

e Similar properties hold for the discrefe-firme compler crorpornerntials

S . — .»‘1[‘.(_'"1-"-“ -
@ For sp[n] to be periodic with fundamental period V., the freguen-
cyv wi: should be a rational multiple of 27, that is wjip — 27K /N .

All distinct complex exponentials with period IV and frequency in the
fundamental range., have freguencies eqgual to {wip — 27K /N ;:_‘:’"O' =

@ T'he discrete complex exponentials are /V-periodic in both the 7-
and A-variables.
sz +— N| = sz ] (periodic in time)

s+ i2] = szxlr] (periodic in frequency)
e T'he complex exponentials are also orthogornial, viz.

N —1 ~N Z-

Frz

) ) o ‘ 7 . o —
<.5}‘.- Sere ) — E > [,l] = rra [’2] S O A Tﬂ'ﬁ Tz

rea=—="=1)

ATME College of
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DDiscrete Fourier Series

- Given a periodic sequence xn; Wwith period NN so that

LT E ™

x[Mm] = x[m =+ rMN ]

= The Fourier series representation can be written as

= [n:l = — :;{[I{JE: i = 4 M Hen
N

« The Fourier series representation of continuous-time _
periodic signals reguire infinite many complex exponentials

= MNot that for discrete-time periodic signals we have

= J[E AN ME - In — = 1[2 = & M JEmn = 2 = Frum | — = jlZ = 7 N j

= Due to the periodicity of the complex exponential we only
need N exponentials for discrete time Fourier series

[Z = 4 N e

— 1 M 1 S
<l = = odkle

ATME College of -
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IPDiscrete Fourier Series Pair

- A periodic sequence 1in termms of Fourier series coefficients
— 1 r L JL2 = & rd Jlemn
rml = — 5 k]
r MLk de=
- The Fourier series coefficients can be obtained via
- [ ] M JLZ = & ra ken
> ke = > = [m]e
[ L]

- For convenlience Wwe sometimes use

- Aanalysis eguation W, — e = sma
~L ] woa .
- Swvnthesis equation X ok = >0 X INAW,
- h 4 e e

ATME College of
Engineering, Mysuru
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Fourier series for discrete-time periodic
signals

e Consider a linear combination of WV complex exponentials

N —1 o N —1
x[rz] = E cre? N EkEn E crsp ]
E—0 e=—0

which is periodic with fundamental period N

@ To determine the series expansion coefficients cp.. we exploit the
orthogonality of s [72] as follows

N —1 N —1
O Wora Yo —— E aln] 5, 2] — E Cht B Hes Ty —— AN Covnn 78— KX, o o ey VN — 1
ra=—0 Je—0O

@ ©'herefore., we have

2 N —1
s — L E x|rn]je 7 ke
N ra—O

which is periodic in A with the fundamental period egual to NV

ATME College of
Engineering, Mysuru
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IDiscrete-time Fourier series

£ T 2T 'L C'
DTES

The Discrete T'irme Fowrier Series (DT FS) pair is defined as

N —1 N —1

- & = l e -
.7‘[77] — E (sk(—JT Fore e T — \’_ --I~[,7](_.—,)‘\—..krz
g, 2 :

E—O ra—90)

e Parseval's relation: The average power in one period of a|7:z]
an be expressed in termms of the Fourier series coefficients as

N —1 N —1

FPavyv — ‘_.{' E [J'[Il]l."3 — E l(‘k}z

Fa=—=L) =0

@ The value of |cp|? provides the portion of the average power ..
of x[72] that is contributed by its A-th harmonic component. Since
iy — i, there are only /N distinct harnmonic components.

@ The graph of |cx|? (as a function of either f — k/N, w =— 27k /N,
or simply &) is known as the power spectrwrn of x[r].

1I°F3
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Fourier representation of aperiodic
signals

e Consider a finite duration sequence o |7r2]. such that =lr2] — O
outside the range — 7.3, < 72 = I.o. Define a periodized verszorn
xylrz] of =[] as

g ] — E x|z — Z IN], withh N = L, +— L5 + 1
I <=3
e The DTFEFS of =,[7»] is given by
N —13
_l.L)[l'] _ E i (—'-'T_.: = Kra
A — O

whoere

l N —1 } 1 -~ =
—~ T E——— - ——_I%:r—’\"l == = _—_/%kll
SR—— - E _7 72l € 3 = - E alrzle
‘\ }”‘[ } -.\. [ ]
ra—1) a0
@ DDefine the ““envelope”™ fuimctiomnn X (&) as
-
-\' ( a7 ) — E -7»{,) ] P g
e = —

ATME College of
Engineering, Mysuru



ATM E

College of Engineering

0273 EUROPE Cepartmerd of EFE

ISO 9001:2015 Ermitzing Ebbe Erengy

On fe the leading edge
www.alme.in

IDiscrete—-time Fourier transform
(IDODOTEFEID)

@ Noticimg that 1/ VN — Aw /27w, we have
N —1 1 BN—3
‘L",le] — E (fL-(—'J:\_.:'L""’ — —— E ‘\" (( 2 A co )‘:_}( K2DNos )»e ."Aw'
—
Fe——0 =—0
@ As IN — oo, xplr] — =xfrn]. V9. Also, as IN — oo, Aw — O, and the

sumimation above passes to ann integral over the freguency range
from O to 2:;1. As a resuult. we have

| B8 B8 s B

T he DDiscretfe T irne Fowrier Trarnsforye (DT F 7T ) pair 1s defined as

1 -

i)l — / X (e )e™ """ dir =— X (7)) — E x frale 7"

I

Fih == — LD

> I'he gquantities X (e7%), | X (e7)], and ZX (e7) are Kknown as the
spectiwurre, rmmagriitude spectrwarre, and phase spectrwrr: of ax|r].
@ Parseval™ s relation:

= = e 1 =N = > o o
E ==l = e / X (7)) | " deo L

— 7

ATME College of
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IDDiscrete Fourier T ransform

= Periodic sequence and DFS coefficients

— 2v—1
X[.k] = > X[
72=0
= I EE=Roas
x[r]l=——2>_ Xy =
N x¥—o

= Since summations are calculated btw O and (N-1)

N —1
(7 £ P24 L el O<k<N—1

XTE] =4 <= - _
l O. otherwise enerally
N —1
N— — ) —
| L5 xtapws™. Oo=n=n—1 X[E] = > [
xl»z] = N = ; i’=(_{-_1
O. otherwise x[722] = == > X[y .-
LV k—o0

ATME College of
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e Given NN samples +[72]. O < 722 = IV — 1 of an N-length sequence,
its Discrete Fowrier Transforyn (DFT) X [A] is defined by

o~ 1 P
XNkl = E xfrn]Je 7 ——— O< kK < N — 1
= —0)

e Given /N DFT coefficients X [A],. O == & = IV — 1, their related NV
“time-domain’ samples x[7]. O < 72 = N — 1 can be recovered by
the irniverse DFT (IDFT1T) gsiven bwv

1 ~N 1
i) = ~ E X [k]le? ™5
—0

@ Note that X [A] is a function of the discrete frequency index A,

which corresponds to «wji — 2w /NN, kK —0,1, . ... N — 1.
I summary: T'he DEL ppair
~N 4 1 N 1

= - S DET = = = r— s - A ——
= — - & ’ 7 - - sz i == > - / x X : N = e 73

X [ K] E__O v | WA —_— {72} ~ kE > X [V | % SN = 7

ATME College of
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IDDiscrete Fourier T ransform

@ The correctness of the DFT formmulas can be validated through:

N —1 N —1 1 N — 1
_.—\' EA‘} — E IZ]“—"k — E I:J\—_ E _\ I’l]“- -”"‘:| ""-."\Irk_ ==

r2a—0) rz —E> r*x — 1)
N 1 1 N 1
— ~C A —wre ) ra
E X [771] ‘\—. E i1 ~N
rra —41) - ra— 941>

@ T'he orthogonality of discrete complex exponentials suggests

N —1 -
Z “—(1\'—71:)'1 _— 1 <“,]\, “-'?,) _ l- l{ — 7L — I',L\
’\' == N O. otherwise
which concludes the proof.
@ Note that the N complex muambers { W =y ;_—01 satisfy
e e N ——
(“ "\.L) —a (_,JZJ.A 22
and therefore thevyv form the roofs of wrnity (i.e.. the IV solutions of
=N __ 1 =—= 0). Note that these roots are 0(1111111\- spaced around the
3 -~ - 3 -~ - -) . - 178

unit circle with the angular spacing of 27 //NV radians.

ATME College of
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The NV eguations for the DFEFT coefficients can be expressed in
ITd At l'iX fC)I’lll aAS
- 3 1 i - 1 -
X [O] - o 2[0]
X [1] _ = ¥ == W (1]
5 _\. [-\- B— 1: = ; i - ‘ ‘ —-.$- -4 1 — .. “ —‘:\:\'_ S i ,;l N =y _ = :-\.‘ S 1] s
—\?.k'\" = “t\r =3 Jt

I'hus. we have

.5 N = W N &N
Note that Wy is svmmetric (W — W L) and orthogornal, vi=.
WEHEH W N = NI — N s — = = YV

I'herefore., =~ can be recovered (synthesized) from X & aaccording
Lo

- . 1 - -
AN — O ~N LK 7L —— T Y % _,*\- . 4 ~N
which is mothing else but a matrix representation of TDET . 179
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IDDiscrete Fourier T ransform

I'he twiddle factor “-_I\‘}” — e 7~ F ijs periodic in both A and =»
with fundamental period N, namely

W ik+NI= _ gk ;e Eade g,

and W — WA

Letting kA € Z results in the Discrete Fowurier Series (DFS):

N —1
X[k] = X[k + N] = D  x[nlWEK™, Vik c Z
ra-—%)

If »2 is allowed to take unpon any integer value, the values of a[72]
will repeat with fundamental period V., resulting in the [frnoverse
Discrete Fowrier Series (IDEFS).

x[r] = [z + N, V7 & Z.

I'hese periodicities are an inherent property of DEFT, which stem
from the discrete nature of time and frequency variables. 180
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Summary of propertles

roperts Veo-point SeEqgRIeTICeE WVepoant IDFT
| Zsirzl, »ir X[AY. ZZ AT, VIA]

7] X3 1kl. Xol k)
1 = cayxy 7l + azxo e ay Xy T&k} + axX1k]

2 — rre) W X Ik]
SRS TR ks Xi ke — )]
2o JIND Rk AXT k + kodwn] + Xk — ko]

f {—r2d ) X&)
Conjusaricon “in X=I{(—&>~N]
2 [ ANxf{—&) 1]
nfr] (VD xtrn) FITAIX[A]
rrelation g1 (VD)1 ¢ — =) XTAI ¥+ 4]
A viel (VD xpa)

] IV —1

*arseval’s theorem S T xfmrly =] = Zx:tzly [rz]

~ 1 N —
-~ |

1 =2 Farscval ™ s =lation > vzl — — =X =2
2 ~ E I X[x]

< i)
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Circular convolution

Assume: x3(n) and x(n) have support n = 0. 1... .. N — 1.
Examples: W = 10 and support: n = 0.1..... O

ATME College of
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Periodic repetition: N=4
== ||_- [=o] [=1 [==]
L x (n) J—L

I Nno overlap I

support length =4 =N xXp(17)

=X {n)
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Periodic repetition: N=4

[1I=-2] =] [=0] =11 [==1]

__J._\_|r'|-_|"|

M L) & ol

JmIrELLEhJ HL

owverlap

support length = & = -"'-‘p.{”}
IIHIIHT WIIHIIHI,
e k") B ° —= | .. i | | L] ] - = -3 T
_
=)
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Circular convolution

Assume: x1(n) and x3(n) have support n — 0.1, .. .. N — 1.
To compute S M 1 sy (k)xa((n K (or STV -3 xa(k)>xa((n Y In):
1. Take the periodic repetition of x2(n) with period N:
A\
xo2p( ) _>_ x2( n IN)
2. Conduct a standard linear convolution of x;(n) and x,(n) for
e e N — 1:
- N—1
x3(n) & x2(n) — xa3(n) = xa2p(N) = E x3(Kk)xop(n — k) = S x1 { Kk Yo m k)
fe=— o~ =0
Note: x3(n) &2 x2(n) —= 0 for n < O and n = N.

ATME College of
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Circular convolution

N—1 N—1 |
> xa(k)xe((n— k)n | =D xai(k)| x2p(n — k) |
. which makes sense, since x((n))n = x,(n).
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Circular convolution-another
inmterpretation

Assume: x3(n) and x(n) have support n — 0. 1. .. .. N — 1.
~N—1 N—1 - )
To compute >, o xi1(k)>xa2((n — Kk)))n (or D> -, o x2(k)xa((n — k))In):
1. Conduct a linear convolution of x;3(n) and x(n) for all n:
== N—1
xp(n) = xa(n) = xa(n) — E x3(k)>xo2(n — k) — E xa(k)>xo(n — k)
k——oc <—0

2. Compute the periodic repetition of x; (n) and window the result for
0, soa N — 1:

x31({n) = x=(n) = E xp(n — IN). 0 N — 1

F— — o

ATME College of
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Using DDE'1l for lL.inear
Convolution

T herefore, circular convolution and linear convolution are related as
follows:

- -

xXc(n) = >x3(Nn) D >x(n) = Z xi (n — IN)

I —— o<

o b —E. X oo N — 1

Q: When can one recover x;(n) from x(n)?
When can one use the DF T to compute linear convolution?

A: When there is no overlap in the periodic repetition of x; (n).
VWhen support length of x;, (n) =< N.

ATME College of
Engineering, Mysuru
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Using DFT for LLinecar Convolution

@ The lincar convolution of two finite-length seguences {.7‘[77]},1;;(1,
and {A[=]}2 ' is a sequence y[n] of length L + A — 1, given by
-
ylr] = E h|Klx|rne — A, i R ag I +— M — 2
k——oc

e The convolution sequence yl7n]| has DTFT given by

Y (7)) — X (&) H(e7)

® If we sample Y (7)) at wp — 27wk /IN, where IN = L +—~ M — 1, we
can uniquely recover w[7n] from Y [A] = Y (e?27&/N),

e On the other hand, the IDFTs of H (7?37 ) and _\'(Jz_\Lf“) vield the
sequences 2[nz] and =[n] padded with (N — A7) and (N — L) zeros,
respectively. As a result,

_q:l,[n] — -1':1,[11] :\f} ,l:_l,[ll] = )'[k‘] — -‘([1{]1’1 [A]

@ Note that if NV = L + A — 1, yln] = y=plr2], O < o < L. + M — 2,

that is. circular convolution is identical to linear convolution. 196
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Using DFT for LLinear Convolution

e T'hus. linear convolution can be implemented by means of the
DFT as shown below.

x o] Pad with xoplra] N—point X 4]
. — DFT

Length (AL—7) zevos
L

N—_point R

N = L +— A — 1]
IDEFT
L.ength
; ~
dilre) Pad with i p i) . | AN—point Hlk] | Y k]| = HIlk)|X k]
Length (L—7) zeros DFT

N

e The length AY of the impulse response at which the DFEFT based
approach is more efficient than direct computation of convolution
depends on the hardware and software available to implement the
computations.

ATME College of
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Using DEF'T for cicular
Convolution

N — [ +— AT — 1.
Let x,,(n7n) have support »n — O. 1. ... . /N — 1.
Let A(n) have support n» — O. 1. ... N — 1.
We zero pad A(n) to have support n — O. 1. . ... /N — 1.
1. Fake N-DET ofF G5 n) To give 2X55a0Kk), kK — O, X, :04 N — 1.
2. Take N-DFT of A(n) to give H((k), k xR | N — 1.
3. NMoltiply: Y. 0k) —2X0K) ~FHk), ' —0O; 1, .« N — 1.
4 Take N-IDFT of Y, .(k) to give v ,.(n?), n — O, 1, ..._. /N — 1.

ATME College of
Engineering, Mysuru
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Using DF'T for cicular

Convolution
e Let’s compute y[7n2] for the case of W — 4. We have
[~ 2Ol [ 2 [O] x[3] x[2] =J1T |1 [ &I0] 7
1] - a[1] [0O] x[3] a [ 2] Fal1]
g2 | = | =21 =[] =[0] =[3] h (2]
L. s3] | | =[3] x[2] =|[1] x[0] | |L R[3]
Koy

@ We note that the column of X n are generated by circularly
shifting o= [n]. A matrix generated by this process is called a
circulant matric.

ATME College of
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Filtering of _.ong Data Sequences

= AIll N-input samples are required simultanecusly by the DFT
operator.

» If IV is too large as for long data sequences, then there is a

significant delay in processing that precludes real-time
processing.

signal Data Acquisition Data Processing signal

iNnput Delay Delay output

ATME College of
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Over-lap Add

s F7{77)

2= Frd71)

ATME College of
Engineering, Mysuru

Input x(n) is divided
into non-overlapping
blocks x,,(n) each of
length L.

Each input block
X5 0.2 is individually
filtered as it is received
to produce the output

block y,.,(rn7).
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Over-lap Add

» makes use of the N-DFT and N-IDFT where: N = L +— M — 1

» [ hus, zero-padding of x(n) and hA(n) that are of length
L. M < N is required.

» [ he actual implementation of the DFT /IDFT will use the fast
Fourier Transform (FFT) for computational simplicity.
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Over-lap Add

== Jalr)

Output blocks il r)
must be fitted together
appropriately to gener-

ate:

y(n) — >x(n) = A(n)
T he support overlap
amongst the V()
blocks must be ac—

counted for.
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Over-lap Add

From the Addititvity property, since:

x(n) = x3(n)+ x2(n) + x3(n) + --- = Z Xm( )

(x2(n) + x2(n) + x3(n) + ---) = l_7( n)
x1(n) * h(n) + x2(n) * h(n) + x3(n) * h(n) + - --

I -

x(n) * h(n)

o

— Z xm(n) * h(n) = \; Vmi(n)

mr—1 m—1

ATME College of
Engineering, Mysuru
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Over-lap Add

Input signal:

y s y & y S
xq (72) S Ar 1
j N~ Zeros !
> ( "l) el A7 — 1
. ~ Zeros 4
) xz(72) AL —
Output signal: \\}_e{rosl
271 (72)
Add '
AL 1 y=2(72) —
points Add 7 e
AT 1 e 3 (72)

points

ATME College of
Engineering, Mysuru
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Over-lap Add

Break the input signal x(n) into non-overlapping blocks x,,(n) of length L.
Zero pad A(n) to be of length N —= L + M — 1.
Take N-DFT of A(n) to give H(k), Kk = 0,1

For each block m:

Zero pad x,,(n) to be of length N — L + M — 1.

Take N-DFT of x,,(n) to give X,,,(k), Kk = 0.1..... N — 1.
Multiply: Y .(k) = X, (k)-H(k), Kk =0,1..... N — 1.
Take N-IDFT of Y, (k) to give y,,(n), n = 0.1, .. .. N — 1.

5. Form y(n) by overlapping the last M — 1 samples of y,,.(n) with the first
M — 1 samples of y,,:1(n) and adding the result.

Engineering, Mysuru
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Over-lap save

Deals with the following signal processing principles:

» The V= (L-+ M — 1)-circular convolution of a discrete-time

signal of length NN and a discrete-time signal of length A7 using
an N-DFT and N-IDFT.

» [ ime-Domain Aliasing:

~>C;

Nt i) = E x (n— IN) . =0, N — 1

I——oc

e
support—M + N — 1

ATME College of
Engineering, Mysuru
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v, (77) Iineax ) v, (722N £ v, (77)
convolution : P AR
2 result iy i
> = e o =
—p 77

L g - -3 =

(4
'

|
L
.
0

Add and keep points only
at »»—0. 1. ... N-1

overlap since

N < I +NI-1 vy _(r2)

corruption from
previous repetitions

ciurcular
convolutrion
result
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Over-lap save

» Convolution of x,,(n) with support n = 0. 1. .. _ . N — 1 and A(n)
with support n = 0. 1. .. .. M — 1 via the N-DF T will produce a
result yc ,,,(n) such that:

(n) - aliasing corruption E—— B ¢ B SR M — 2
YC.m Vi (1) i — X Py s N — 1
where vy ,(n) — xn»(n) = A(n) is the desired output.

» [ he first M — 1 points of a the current filtered output block
vm(n) must be discarded.

» [ he previous filtered block y,,, 1(n) must compensate by
providing these output samples.

ATME College of
Engineering, Mysuru
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Over-lap save imput segment stage

1. AIll input blocks x,,,(n) are of length N —= (L + M — 1) and
contain sequential samples from x(n).

2. Input block x,,(n) for m = 1 overlaps containing the first M — 1

points of the previous block x,,, 1(n) to deal with aliasing
corruption.

3. For m = 1, there is no previous block, so the first M — 1 points
are zeros.

ATME College of
Engineering, Mysuru
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Over-lap save imput segment stage

Inpur signal blocks:

- / & - — I - - 7 -
ZCST OS
- -
9 M ( TL )
A7 1 v \ SRl L —_—
point xo(72)
0\'erlap L 4 L 4 v
AT — 1 —
point 3 ( 72')

overlap

ATME College of
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siltn) = H40O. . = O, 3(Q).2¢(1), .. - x(L — 1)}
=
w(n) — 4L —M 4 1),..-x{L — X2),%(L), .- x(2L — 1)}
h lout M — X Foints o e (n) ~
xz3(n) = {x(2L — M +1)....x(2L — 1).x(2L)..... x(3L — 1)}
h it AP — § points Feow i) ~
The last MM — 1 points from the previous input block must be saved

for use in the current input block.

ATME College of
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» makes use of the N-DFT and N-IDFT where: N = L — M — 1

» Only a one-time zero-padding of hA(n) of length M < L < N is
required to give it support n —= 0. 1.. ... N — 1.

» [ he input blocks x,,(n) are of length NN to start, so no
zero-padding is necessary.

» [ he actual implementation of the DFT /IDFT will use the fast
Fourier Transform (FFT) for computational simplicity.

ATME College of
Engineering, Mysuru
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Over-lap save output blocks

b} = ahasing n=—0,1,..., M —2
YC.m = yim(n) n=M-—-—1,M,.... N—1

where y; »(n) = x,(n) = h(n) is the desired output.
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Over-lap save output blocks

yvi(n) = {y1(0). IEE)s o vi(M — 2)., y(O0),..., y{L-—34)}
AM — 1 points corr:pted from aliasing
y2(n) = {y2(0). y2(1), ... Yol NS — 2Z), L), ~icns yv(2L — 1)}
AM — 1 points corr:pted from aliasing
yva(rn) {»3(0). vafl), --- ya(M — 2).y(2L). ..., y(3L — 1)}
A — 1 points corr:pted from aliasing
where v(n) — x(n) = Ah(n) is the desired ocoutput.
The first M — 1 points of each output block are discarded.

The remaining L points of each output block are appended to form
y(n).

ATME College of
Engineering, Mysuru
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Over-lap save output blocks

Output signal blocks:

= 271 (72)
Discard
points Discard
R — 1 _B= y3(72)
points Discard
AM — 1
poimts
1 (72) y2(72) y3(72)

1), 72.—0,1,2, ...

ATME College of
Engineering, Mysuru
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Over-lap save
1. Insert MM — 1 zeros at the beginning of the input sequence x(n).
2. Break the padded input signal into overlapping blocks x,,(n) of length
N — [ + M — 1 where the overlap length is A7 — 1.
3. Zero pad A(n) to be of length N — [ + M — 1.
4. Take N-DFT of hA(n) to give H(k), Kk = 0.1,.... N — 1.
5. For each block m:
5.1 Take N-DFT of x,h(n) to give X (k), Kk —0,1,..., N — 1
5.2 Multiply: Ym(k) = Xgm(k) - H(Kk), Kk =0,1,..., N — 1.
5.3 Take N-IDFE T Of Y Uh) togive yte), a—0,1, . ..., N — 1.
% Discard the first M — 1 points of each output block y,,(n).
6. Form yv(n) by appending the remaining (i.e., last) L samples of each block
v ().

ATME College of
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Toyput signal blocks:
; 7 y
N — 1
ZeTOoSs
> -
axq (72)
7 1 L 4 - L -
point x=>{(72)
overliap . v +
AT = — ——
point -3 ( 7z )
Ourput signal blocks: overlap
IDiaiscard
AT I = =(72)
Ponts IDiscard _
AT I = =z (72)
points IDiscard
A — 1
pomnts

ATME College of
Engineering, Mysuru
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Relationships between CTEFT,
IDDTET, S 1WFT

@ T'he WN-point DFEF'T provides a unique representation of the
N -—samples of a finite duration sequence.

e The DEFT provides samples of the DT EFT of the seguence at a set
of egually spaced frequencies.

e Suppose that we are given a continuous-time signal = () with
Fourier transforym X _(7€2).

e Its relate discrete signal x|7n] — > (7277) has the DTFEFT given by

=y — § x (T )e 2T — T z . <J (sz e ))

® Since w — 277, tlu‘_‘ N-point DFT X J[A] is obtained by sampling

X (7)) at wp — = - (or. alternatively., by sampling X (e75277) at
Q2. — Fmr k). Porlnall\'

_\’[A-]:% ;,. X ( ("" 1)) =050 x50V —1A 224
ATME College of
Engineering, Mysuru
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Relationships between CTFEFT,
DTFT, & DE'T

e Sampling the DTFT of =[] is egquivalent to the periodic repeti-
tion of =x[72] with period /N or equivalently of =_.(7") with period
NT'. The result is

x[n] = E (A" — NTK)

A
@ Therefore, we have the following N-point DF'T pair

— : : 1 - 2~ | 27T
E .I',_.(IIT = I T") e ? EA‘ .XC (J (ﬁl. — 7T III))

-

where O < n2 < N —1 and O < E< N — 1.

e The above relation reveals a frequency-domain aliasing caused by
time-domain sampling and a time-domain aliasing caused by fre-
quency-domain sampling (which., in turn, explains the inherent _

- - - - - ZZD
periodicity of the DFEFT).

ATME College of
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Relationships between CTFT, DTFT,
& DFT

‘L(I)4 \C( u‘?)
CTF1 /T\
ad r J = =l Sy
0 [ | 0 E
l Sampling L Periodization
> o 27
x[n] = xe(nT) Xe®H)== Y x.|ie- w——)
I & /
m=—-0C
DTFT
" ‘ ] : - -
! |
= ?
111] 1
0 nl 0 2
ch-.'iudiz_aliun Sampling
Y
o0 DFT s 2k 2
i[n] 5_» O —INT) e X[k —f,nzv X, ( j; . .,,—’)

ATME College of
Engineering, Mysuru
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