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INSTITUTIONAL VISION AND MISSION

VISION:

» Development of academically excellent, culturally vibrant, socially responsible, and
globally competent human resources.

MISSION:

» To keep pace with advancements in knowledge and make the students competitive
and capable at the global level.

» To create an environment for the students to acquire the right physical, intellectual,
emotional, and moral foundations and shine as torchbearers of tomorrow's society.

» To strive to attain ever-higher benchmarks of educational excellence.

Department Vision and Mission
Vision:

To produce Electrical & Electronics Engineers through greatest quality of technical
education, technical skill training and intellectual capacity building of individuals.

Mission;

* To provide knowledge to students that builds a strong foundation in the basic
principles of electrical engineering, problem solving abilities, analytical skills, soft
skills and communication skills for their overall development.

» To offer outcome based technical education.

« To encourage faculty in training & development and to offer consultancy through
research & industry interaction.



Program Educational Objectives (PEOs)

PEOL: To produce competent and Ethical Electrical and Electronics Engineers who will exhibit

the necessary technical and managerial skills to perform their duties in society.

PEO2: To make students continuously acquire and enhance their technical and socio-economic

skills.

PEQO3: To aspire students on R&D activities leading to offering solutions and excel in various

career paths.

PEO4: To produce quality engineers who have the capability to work in teams and contribute to real time

projects.

Program Outcomes (POs)

Engineering Graduates will be able to:

POL1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals and an engineering specialization to the solution of complex engineering
problems.

PO2: Problem Analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design / Development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex engineering
activities with an understanding of the limitations.



POG6: The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent responsibilities
relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the knowledge
of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities
and norms of the engineering practice.

POQ9: Individual and team work: Function effectively as an individual and as a member or
leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of
the engineering management principles and apply these to one’s own work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for and have the preparation and ability to
engage in independent and lifelong learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

The students will develop an ability to produce the following engineering traits:

PSO1: Apply the concepts of Electrical & Electronics Engineering to evaluate the

performance of power systems and also to control industrial drives using power electronics.

PSO2: Demonstrate the concepts of process control for Industrial Automation, design models

for environmental and social concerns and also exhibit continuous self- learning.



BEES502_Signals & Digital Signal Processing

MODULE - 2: DISCRETE FOURIER TRANSFORMS

Structure

2.0 Objectives
2.1 Frequency Domain Sampling and Reconstruction of Discrete time signals
2.2 Discrete Fourier Transforms
2.3 DFT asaLlinear Transformation
2.4 DFT Relationship with other transforms
2.4.1 DFT and Fourier Series of Aperiodic signals
2.4.2 DFT and Fourier Transform
2.4.3 DFT and ZTransforms
2.4.4 DFT and Fourier Series of Continuous periodic Signals
2.5 Outcomes
2.6 FurtherReadings

2.0 Objectives

1. Tointroduce the basic concepts and techniques for processing signals on a computer.
2. To study the conversion of analog signalsto digital signals

3. To analyse the need for digital signal processing and importance of digital systems
4. To study the frequency domain analysis of digital signals

5. To study the importance of DFT and its applications
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2.1 Introduction:

Before we introduce the DFT we consider the sampling of the Fourier transform of an
aperiodic discrete-time sequence. Thus we establish the relation between the sampled Fourier
transform and the DFT.A discrete time system may be described by the convolution sum, the
Fourier representation and the z transform as seen in the previous chapter. If the signal is
periodic in the time domain DTFS representation can be used, in the frequency domain the
spectrum is discrete and periodic. If the signal is non-periodic or of finite duration the
frequency domain representation is periodic and continuous this is not convenient to
implement on the computer. Exploiting the periodicity property of DTFS representation the
finite duration sequence can also be represented in the frequency domain, which is referred to
as Discrete Fourier Transform DFT.

DFT is an important mathematical tool which can be used for the software
implementation of certain digital signal processing algorithms .DFT gives a method to
transform a given sequence to frequency domain and to represent the spectrum of the sequence
using only k frequency values, where k is an integer that takes N values, K=0, 1, 2,.....N-1.
The advantages of DFT are:

1. Itis computationally convenient.
2. The DFT of a finite length sequence makes the frequency domain analysis much

simpler than continuous Fourier transform technique.

1.2 FREQUENCY DOMAIN SAMPLING AND RECONSTRUCTION OF DISCRETE
TIME SIGNALS:

Consider an aperiodic discrete time signal x (n) with Fourier transform, an aperiodic finite

energy signal has continuous spectra. For an aperiodic signal x[n] the spectrum is:
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Suppose we sample X[w] periodically in frequency at a sampling of dw radians between
successive samples. We know that DTFT is periodic with 2, therefore only samples in the

fundamental frequency range will be necessary. For convenience we take N equidistant

samples in the interval (O<=w<2m ). The spacing between samples will be dw = ZW” as shown

below in Fig.1.1.
X[w]

A

il

Fig 1.1 Frequency Domain Sampling

v

Let us first consider selection of N, or the number of samples in the frequency domain.

If we evaluate equation (1) atw = %

o0

x[%} = > x[nj 7N K=0L2 s (N =2) oo, (1.2)

n=—ow

We can divide the summation in (1) into infinite number of summations where each sum

contains N terms.

27K < P N —j2zkn/N
X[ == =t Y X[ 72N 3" x[ne 7™ + > x[n]e !
N n=—N n=0 n=N
o IN+N-1 _
— Z Zx[n]e—jann/N
|=—0 n=IN

If we then change the index in the summation from n to n-I N and interchange the order of

summations we get:
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[%} Nl[ix[n—lN]}e‘””k”’N for k=012,.....,(N-1).......(1.3)

Denote the quantity inside the bracket as xp[n]. This is the signal that is a repeating version of

x[n] every N samples. Since it is a periodic signal it can be represented by the Fourier series.

N-1 .
= el n=012,...... (N -1
With FS coefficients:
1% ;
C, :Wz X, [nje 17 k=012 ey (N=D) oo, (1.4)
n=0

Comparing the expressions in equations (1.4) and (1.3) we conclude the following:

1 2r
C, —WX{Wk} k=01,....... J(IN=D) oo (1.5)

Therefore it is possible to write the expression xp[n] as below:

N
x,[n =%z ﬁ\’l’ }eﬂﬂkw N=0L.s(N=1).......... (1.6)

The above formula shows the reconstruction of the periodic signal xp[n] from the samples of

the spectrum X[w]. But it does not say if X[w] or x[n] can be recovered from the samples.

Let us have a look at that:
Since Xxp[n] is the periodic extension of x[n] it is clear that x[n] can be recovered from xp[n] if
there is no aliasing in the time domain. That is if x[n] is time-limited to less than the period N

of xp[n].This is depicted in Fig. 1.2 below:
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0 L
Xp[N] N>=L
I No aliasing
'o’ % Te
o e |lTte .
0 L N
Xp[n] N<L
Aliasing
It UTUTT
0 N

Fig. 1.2 Signal Reconstruction

Hence we conclude:
The spectrum of an aperiodic discrete-time signal with finite duration L can be exactly

recovered from its samples at frequencies w, = % if N>=L.

We compute xp[n] for n=0, 1,....., N-1 using equation (1.6)
Then X[w] can be computed using equation (1.1).

1.3 Discrete Fourier Transform:

The DTFT representation for a finite duration sequence is
o0 -jon
X (o)=Y x(n)e
n=-oo
jon
X(n)=12n X (jw)e do, Where o=2nk/n2n
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Where x(n) is a finite duration sequence, X(jw) is periodic with period 2m.It is
convenient sample X(jo) with a sampling frequency equal an integer multiple of its period =m
that is taking N uniformly spaced samples between 0 and 2.

Let ox= 2nk/n, 0<k<N-1

0 -j2mkn/N

Therefore X(jo)=> x(n) e

n=—oo

Since X(jo) is sampled for one period and there are N samples X(jo) can be expressed
as

N-1 -j2mkn/N
X(K) = X(jo) | E:__zgkw =Y x(n) e 0<k<N-1
1.4 Matrix relation of DFT
The DFT expression can be expressed as
[X] = [x(n)] [WN]
Where [X] = [X(0), X(1),........ ]

[x] is the transpose of the input sequence. WN is a N x N matrix

WN= 1 1 L1 1
1  wnlwn2 wn3.................. wn n-1
1  wn2 wn4d wn6 ............... wn2(n-1)
Lo WN (N-1)(N-1)
ex;
4 pt DFT of the sequence 0,1,2,3

X(0) 1 1 1 1

X(1) 1 ) -1 i

X@2) = 1 -1 1 -1

X(3) 1 i -1 )

Solving the matrix X(K) = 6 , -2+2j, -2, -2-2j

1.5 Relationship of Fourier Transforms with other transforms
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1.5.1 Relationship of Fourier transform with continuous time signal:

Suppose that xa(t) is a continuous-time periodic signal with fundamental period Tp= 1/Fo.The

signal can be expressed in Fourier series as
oo
x (1) = Z cke;br.kﬂ)
k=—nC

Where {ck} are the Fourier coefficients. If we sample Xa(t) at a uniform rate Fs = N/Tp = 1/T,

we obtain discrete time sequence

) oc
x(n) = x,(nT) = Z cpel 2TRFnT Z Ck‘,jlnkn/h.’
k=—m k=—nc
N-| x
— Z |: Z q"wjl I 2k {N
k=t [ =m0
g ¥
X{ky=N Z v = Noy
f=—m

Thus {ck'} is the aliasing version of {ck}
1.5.2 Relationship of Fourier transform with z-transform

Let us consider a sequence X(n) having the z-transform

o0

X()= Y x(mz™"
n=—00
With ROC that includes unit circle. If X(z) is sampled at the N equally spaced points on the
unit circle Zx = e 2™®Nfor K= 0,1,2,........... N-1 we obtain

X(K) = X(2)|ompitmatrn k=0,1,...,.N—=1

oo

p— Z x(n )e—jlrrnk/h‘

n=—00

The above expression is identical to Fourier transform X(w) evaluated at N equally spaced
frequencies wk = 2nk/N for K= 0,1,2,........... N-1.

If the sequence x(n) has a finite duration of length N or less. The sequence can be recovered

from its N-point DFT. Consequently X(z) can be expressed as a function of DFT as
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N—1
X(z) = Z x(n)z™"
n={0

N-1 1 N-1 _
X@ =) [— > X(k)e"z"*"/"’:| z™"
N k=0

n={)

1 N-1 N-1 ok .
= j N~y
X(z) = ﬁkZﬂ;X(k)nzto(el ™l
1-z7V = X

kN ]
N 41— e/kiNg

X(z) =

Fourier transform of a continuous time signal can be obtained from DFT as

1 — g—jwN -] X (k)

o~ j(w—2nk/N)
N k=01 e~ Jjiw /

Xw) =

1. The first five points of the 8-point DFT of a real valued sequence are {0.25, 0.125-
j0.318, 0, 0.125-j0.0518, 0}. Determine the remaining three points

Ans: Since x(n) is real, the real part of the DFT is even, imaginary part odd. Thus the
remaining points are {0.125+j0.0518,0,0, 0.125+j0.318}.

2. Compute the eight-point DFT circular convolution for the following sequences.
X2(n) = sin 3n/8
Ans:

(a)
fz(f} = Ig“}, DEfSN—l
= n(+N), -(N-1gig-1

() = m(‘%n. 0<I<T
= sn(g+s), -7

= sin(3Zup, WM<
8
3

Therefore, :ﬂn]z;l{n} = Z £*(n—m)

m=0
. 3 o
= sin(%hi) + sm[?’-ln =1+...+ sm{?ln - 3|)
= {1.25,2.55,2.55,1.25,0.25,-1.06, - 1.06,0.25)}

8
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3. Compute the eight-point DFT circular convolution for the following sequence
Xs(n) = cos 3nn/8

za(n) = cos(a—;[n], 0<iI<?T
= -cos(a—;-n), -7<i<-1

[2u(n) - 1] r:os(-qg-n), In|<7

3 1 m_
Therefore, 1’1(“)1‘3(!‘1) Z (Z) #?(n — m)

m=0

{0.96,0.62,—0.55, —1.06, —0.26, —0.86,0.92, -0.15}

4. Define DFT. Establish a relation between the Fourier series coefficients of a continuous
time signal and DFT

Solution

The DTFT representation for a finite duration sequence is

X (jo) =Y x (n) eion
N= -co

X (n)=12n JX (jo) e dw, Where o= _2nk/n
2n
Where x(n) is a finite duration sequence, X(jo) is periodic with period 2m.It is
convenient sample X(jo) with a sampling frequency equal an integer multiple of its period =m
that is taking N uniformly spaced samples between 0 and 2.
Let o= 2ntk/n, 0<k<N
o0
Therefore X(jo) =Y x(n) 2N
n=—o0
Since X(jo) is sampled for one period and there are N samples X(jo) can be expressed
as
N-1 4
X(k) = X(jo) | o=2rkoN =Y, X(n) e3FN - 0<k<N-1
n=0

9
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5.7 I X (k) is the DFT of the sequence x(n), determine the N-point DFTs of the sequences

x.(n) = x(n) cos

O<n<N-1
and

x,(n) = x(n)sin

0<n<N-1

in terms of X (k).
Solution:-

E
|

Xd(k) o) (22 4 cmi ) 20

1
2

|
]
i
(=]

=z

-1 N-1 . .
z(n)e_jngu-knz- + % z :(n)e_:.: (h+hp)
0 n=0

L S

1
X(k = ko)modn + §X(k + ko) modw

f =

1
similarly, X,(k) -X (k ~ ko)modn — 57X (k + ko)modn

J 2j

%)

5. Find the 4-point DFT of sequence x(n) = 6+ sin(2an/N), n=0,1,......... N-1

Solution :-

%)
Here x(n) = b+sin[%ﬂ j, with N=4
)

x(n) = 6+sin

.
= ) n=01,23

= 6+sin[—:[n ] n =01,223

-~

= {6, 7, 6, 5.
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6. Compute the N -point DFTs of the signal
2n
.r{n):cosikgn O0<n<N-1

Solution

N-1
X(k) = 3 eFntoemiRin

o
= 3 emiH-ton
 NB(k — ko)
- l'ﬁnku l-ﬂi;nku
2(n) = 2e’ +5e
N
From (¢) we obtain X(k) = 3 [6(k - ko) + 6(k - N + ko))

Department of EEE, ATMECE Mysuru
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2.1Properties of DFT

The DFT and IDFT for an N-point sequence x(n) are given as

~N—]
DFT: X(k) = Y x(mWy  k=0.1_...N-1
n=0

1N-I. i
IDFT:x(n):-EgX(k)WN n=01,.... N-1

where Wy is defined as
Wy = e"j 2n/N

In this section we discuss about the important properties of the DFT. These properties are

helpful in the application of the DFT to practical problems.

The notation used below to denote the N-point DFT pair x(n) and X (k) is

x(n) E—EE X (k)

2.1.1 Periodicity

If x(n) and X(k) are an N-point DFT pair, then
x(n+ NY=x(n) for all n
X(k+ N)= X(k) forallk

2.1.2 Linearity
If xin) S5 X100
x2(n) PTFT» X2 (k)

Then A x1 (n) + b x2 (n) «— a X1(k) + b X2(k)

13
Department of EEE, ATMECE Mysuru



2.1.3 Circular shift

In linear shift, when a sequence is shifted the sequence gets extended. In circular shift the
number of elements in a sequence remains the same. Given a sequence X (n) the shifted

version x (n-m) indicates a shift of m. With DFTs the sequences are defined for O to N-1.

If x (n) =x(0), x (1), x (2), x (3)
X (n-1)= x(3),x(0),x(1)x(2

X (n-2) = x(2),x(3),x(0),x(2)

2.1.4 Time shift

If X (n) «— X (k)
mk
Then x (n-m) «~— WN X (k)

2.1.5Frequency shift

If X(n)<—— X(k)
+nok
Whn x(n) «—X(k+no)
N-1 kn
Consider x(k) =2 x(n) Wn
n=0
N-1
(k+ no)n
X(k+no)=2\ x(n) WN
n=0
kn non
=Y x(n) WN WN

non
- X(k+no)«——x(n) WN

2.1.6Symmetry
For a realsequence, if x(n)<—> X(k)

X(N-K) = X* (k)

14
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For a complex sequence
DFT(x*(n)) = X*(N-K)

If x(n) then  X(k)

Real and even | real and even

Real and odd | imaginary and odd
Odd and imaginary | real odd

Even and imaginary | imaginary and even

2.1.7 Convolution theorem

Circular convolution in time domain corresponds to multiplication of the DFTs
If y(n) = x(n) ® h(n) then Y (K) = X(k) H(k)

Ex letx(n)=1,2,2,1 and h(n) =1,2,2,1
Theny (n) = x(n) ® h(n)

Y(n) =9,10,9,8

N pt DFTs of 2 real sequences can be found using a single DFT

If g(n) & h(n) are two sequences then let x(n) = g(n) +j h(n)

G(k) =% (X(k) + X*(k))

H(K) = 1/2] (X(K) +X*(Kk))

2N pt DFT of a real sequence using a single N pt DFT

Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT
Let y(n) =x(2n) and g(2n+1)

X (k) =Y (k) + WN I(G (k)

Using DFT to find IDFT

The DFT expression can be used to find IDFT
X(n) = 1/N [DFT(X*(K)]*

15
Department of EEE, ATMECE Mysuru



2.2 Digital filtering using DFT

In a LTI system the system response is got by convoluting the input with the impulse
response. In the frequency domain their respective spectra are multiplied. These spectra are
continuous and hence cannot be used for computations. The product of 2 DFT s is equivalent
to the circular convolution of the corresponding time domain sequences. Circular convolution
cannot be used to determine the output of a linear filter to a given input sequence. In this case a
frequency domain methodology equivalent to linear convolution is required. Linear
convolution can be implemented using circular convolution by taking the length of the

convolution as N >=nl1+n2-1 where nl and n2 are the lengths of the 2 sequences.

2.2.1 Overlap and add

In order to convolve a short duration sequence with a long duration sequence x(n) ,x(n)
is split into blocks of length N x(n) and h(n) are zero padded to length L+M-1 . circular
convolution is performed to each block then the results are added. These data blocks may be

represented as

I](n) = {X(O),x(l), e 9X(L - 1)0 00 01 . .-.O}
N .
M-1 zeros
xa(n) = {x(L),x(L+1),...,x(2L - 1),0,0,...,0}
St e
M~—1 zeros
x3(n) = {x(2L),...,x(3L - 1),0,0,...,0)
| —

M~—1 zeros
The two N-point DFTs are multiplied together to form
Ynk) = HK)Xn(k) k=01,... . N-1

The IDFT vyields data blocks of length N that are free of aliasing since the size of the
DFTs and IDFT is N = L+M -1 and the sequences are increased to N-points by appending
zeros to each block. Since each block is terminated with M-1 zeros, the last M-1 points from
each output block must be overlapped and added to the first M-1 points of the succeeding
block. Hence this method is called the overlap method. This overlapping and adding yields the

output sequences given below.

16
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y) = (n(0), (1), ... . n(L =Dy yi(L) + »(0), (L + 1) +
M, ... o n(N=1)+nM-1),nM),..}

Input data

b= L—f= L f L—i
r
xy(n}
~
M-1
zeros
v
Xaln)
N
M-1
zeros
1
X‘_';”I) %
Output data
Vi) %
Sl ST/
add  — Y
togﬂhﬂl’ /
M-1 points: va(m) %
add — — Figure 5.11 Linear FIR filtering by the
together overlap-add method.

2.2.2 Overlap and save method

In this method x (n) is divided into blocks of length N with an overlap of k-1 samples.
The first block is zero padded with k-1 zeros at the beginning. H (n) is also zero padded to
length N. Circular convolution of each block is performed using the N length DFT .The output
signal is obtained after discarding the first k-1 samples the final result is obtained by adding
the intermediate results.

In this method the size of the I/P data blocks is N= L+M-1 and the size of the DFts and
IDFTs are of length N. Each data block consists of the last M-1 data points of the previous
data block followed by L new data points to form a data sequence of length N= L+M-1. An N-

17
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point DFT is computed from each data block. The impulse response of the FIR filter is
increased in length by appending L-1 zeros and an N-point DFT of the sequence is computed
once and stored.

The multiplication of two N-point DFTs {H(k)} and {Xm(k)} for the mth block of data yields

Ym(k) = HI)Xn(k) k=0,1,....N—1
Then the N-point IDFT yieids the result
Frm(1) = (Fm @ Fm(1) - 5m (M — 1)Fm(M) - - (N — 1))

Since the data record is of the length N, the first M-1 points of Ym(n) are corrupted by
aliasing and must be discarded. The last L points of Ym(n) are exactly the same as the result

from linear convolution and as a consequence we get

Fm() = Ymn)n =M, M+1 ... N—1

xi(n) =1{0,0,...,0,x(®, x(1),...,x(L = 1)}
mr— ro————

M—1 points
xa(n) = {x(L —~M+1),..., x(L—1),x(L)...., x(2L = 1)}
M-1 d;a_ points L new d:ta points
from x;(n)

x3(n) = [3:(21.. -—M+1,....x2L - 1).1;(21‘), co o x(3L = 1))

M—1 data points L new data points
from x3(n)

and so forth. The resulting data sequences from the IDFT are given by (5.3.8),
where the first M — ] points are discarded due to aliasing and the rematning L
points constitute the desired result from linear convolution. This segmentation of
the input data and the fitting of the output data blocks together to form the output
sequence are graphically illustrated in Fig. 5.10.

18
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Input signal |}

L—]
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7

I|(ﬂ)

M-1

Output signal

X3{n)

2

¥iim

Discard
M-1
poinis

1
7

Discard

M-1
points
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Figure 5.10 Linear FIR filtering by the
overlap-save method.
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Recommended Questions with solutions

1. State and Prove the Time shifting Property of DFT
Solution

The DFT and IDFT for an N-point sequence x(n) are given as

n—1
DFT: X(k) = > x(mW§  k=01_....N-1
n=0

lN—l i
IDFT:x(n):-FgX(k]WN n=01....N-1

where Wy is defined as
Wy = e"j 2n/N

Time shift:

If X (n) «— X (k)
mk
Then x (n-m) «— WN X (k)

2. State and Prove the: (i) Circular convolution property of DFT; (ii) DFT of Real and
even sequence.

Solution
(i) Convolution theorem

Circular convolution in time domain corresponds to multiplication of the DFTs
If y(n) = x(n) ® h(n) then Y (K) = X(k) H(k)
Ex letx(n) =1,2,2,1 and h(n) =1,2,2,1 Theny (n) = x(n) ® h(n)

Y(n) =9,10,9,8

N pt DFTs of 2 real sequences can be found using a single DFT

If g(n) & h(n) are two sequences then let x(n) = g(n) +j h(n)

G(Kk) = %2 (X(k) + X*(k))

H(k) = 1/2j (X(K) +X*(k))

2N pt DFT of a real sequence using a single N pt DFT

Let x(n) be a real sequence of length 2N with y(n) and g(n) denoting its N pt DFT
Let y(n) = x(2n) and g(2n+1)
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k
X ((K)=Y (k) +WN G (k)
Using DFT to find IDFT
The DFT expression can be used to find IDFT
X(n) = 1/N [DFT(X*(K)]*

(i)DFT of Real and even sequence.
For a real sequence, if x(n)«—— X(k)
X (N-K) = X* (k)

For a complex sequence
DFT(x*(n)) = X*(N-K)

If x(n) then  X(k)

Real and even | real and even

Real and odd | imaginary and odd
Odd and imaginary | real odd

Even and imaginary | imaginary and even

3. Distinguish between circular and linear convolution
Solution

1) Circular convolution is used for periodic and finite signals while linear convolution is
used for aperiodic and infinite signals.

2) In linear convolution we convolved one signal with another signal where as in circular
convolution the same convolution is done but in circular pattern depending upon the
samples of the signal

3) Shifts are linear in linear in linear convolution, whereas it is circular in circular
convolution.

For the sequences
x{n) =cos %n xz(n) = sin %:rin 0<n<N-1

determine the N-point:

() Circular convolution x,(n) @J:z(n)
(b) Circular correlation of x;(n) and x2(n)
{c) Circular autocorrelation of x;(n)

(@) Circular antocorrelation of x;(n)

Solution(a)
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ni(n) = 3 (dFn+emiIFn)
Xi(k) = %[6(t—1)+6(k+1)]
also Xa(k) = % (6(k — 1) — 8(k + 1))
So Xa(k) = X (k)X2(k)
Nz
= 4—J_[é(k—1)—6(k+1)]
and za(n) = %sin(%n)
Solution(b)
Rey(k) = X\(k)X3(k)
N?
= Tj—[é(k-l)-é(k+l)]
N .2
= Trl(n) = —?sm(%n)
Solution(c)
Reo(k) = Xi(k)X;(k)
NZ
= -4—[6(k—1)+6(k+1)]
= fzz(n) = %cos(%n)
Solution(d)
Ryy(k) = Xa(k)X3(k)
2
= NT[a(k-l)+5(k+1)]
= Fy(n) = l:—cos(%rn)

05.

Use the four-point DFT and IDFT to determine the sequence

x3(n) = x1{n) @xz{u)

where x;(n) and x;(n) are the sequence given
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x;(n) = {1,2, 3,1}
T

xz(n) = {4,3,2,2}
T

y(n) = zi(n)dz2(n)

3
= z 21(M)mods?2(" = M)mods

m=0

= {17,19,22,19)

Xl(k) = {7!_"2_]-!1’_24'3.}
Xa2(k) = {11,2-3j,1,2+ 5}
= Xa(k) = X,(k)X2(k)

I

{17,19,22,19}

A linear time-invariant system with frequency response H(w) is excited with the
periodic input

Suppose that we compute the N-point DFT Y (k) of the samples y(n),0 <n < N -1
of the output sequence. How is Y (k) related to H(w)?

Solution

z(n) = 3 é(n-iN)

i=—o0

S~ h(m)z(n - m)

;h(m] [z §(n—m— :'N]]

= Y h(n-iN)

y(n)

Therefore, y(.) is a periodic sequence with period N. So

N-—1
Y(k) = 3 y(n)WA"
n=0
= H(w)lw=3ss
k
Y(k) = H(z—;— k=01, N-1
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Further Readings

1. http://eeweb.poly.edu/isel esni/EL 713/zoom/dftprop.pdf

2. https://engineering.purdue.edu/~ee538/DFT_Properties.pdf

3. http://www.nptel .ac.in/courses/108101039/downl oad/L ecture-34.pdf
4. http://www.ecsutton.ece.ufl.edu/di p/handouts/convexampl e.pdf

5. http://sist.sysu.edu.cn/upl oaded/file/Chpt03.pdf
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