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SIGNALS AND DIGITAL SIGNAL PROCESSING 



INSTITUTIONAL VISION AND MISSION 

VISION: 

• Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

MISSION: 

• To keep pace with advancements in knowledge and make the students competitive

and capable at the global level.

• To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torchbearers of tomorrow's society.

• To strive to attain ever-higher benchmarks of educational excellence.

Department Vision and Mission 

Vision: 

    To create Electrical and Electronics Engineers who excel to be technically competent and  

fulfill the cultural and social aspirations of the society.

Mission: 

• To provide knowledge to students that builds a strong foundation in the basic

principles of electrical engineering, problem solving abilities, analytical skills, soft

skills and communication skills for their overall development.

• To offer outcome based technical education.

• To encourage faculty in training & development and to offer consultancy through

research & industry interaction.
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Program Educational Objectives (PEOs) 

PEO1: 

To produce Electrical and Electronics Engineers who will exhibit the technical and 

managerial skills with professional ethics for the societal progress. 

PEO2:  

To make students continuously acquire, enhance their technical and socio-economic skills 

and also to be globally competent.

PEO3:  

To impart the experience of research and development to students so that they develop 

abilities in offering solutions to relevant diverse career path.  

PEO4:  

To produce quality engineers with a team leading capabilities, also show good coordination 

to contribute towards real time application of projects 

Program Outcomes (POs) 

Engineering Graduates will be able to: 

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, 

engineering fundamentals and an engineering specialization to the solution of complex 

engineering problems. 

PO2: Problem Analysis: Identify, formulate, review research literature, and analyze 

complex engineering problems reaching substantiated conclusions using first principles of 

mathematics, natural sciences, and engineering sciences. 

PO3: Design / Development of solutions: Design solutions for complex engineering 

problems and design system components or processes that meet the specified needs with 

appropriate consideration for the public health and safety, and the cultural, societal, and 

environmental considerations. 

PO4: Conduct investigations of complex problems: Use research-based knowledge and 

research methods including design of experiments, analysis and interpretation of data, and 

synthesis of the information to provide valid conclusions. 

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and 

modern engineering and IT tools including prediction and modeling to complex 

engineering activities with an understanding of the limitations. 
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PO6: The engineer and society: Apply reasoning informed by the contextual knowledge 

to assess societal, health, safety, legal and cultural issues and the consequent 

responsibilities relevant to the professional engineering practice. 

PO7: Environment and sustainability: Understand the impact of the professional 

engineering solutions in societal and environmental contexts, and demonstrate the 

knowledge of, and need for sustainable development. 

PO8: Ethics: Apply ethical principles and commit to professional ethics and 

responsibilities and norms of the engineering practice. 

PO9: Individual and team work: Function effectively as an individual and as a member 

or leader in diverse teams, and in multidisciplinary settings. 

PO10: Communication: Communicate effectively on complex engineering activities with 

the engineering community and with society at large, such as, being able to comprehend 

and write effective reports and design documentation, make effective presentations, and 

give and receive clear instructions. 

PO11: Project management and finance: Demonstrate knowledge and understanding of 

the engineering management principles and apply these to one’s own work, as a member 

and leader in a team, to manage projects and in multidisciplinary environments. 

PO12: Life-long learning: Recognize the need for and have the preparation and ability to 

engage in independent and lifelong learning in the broadest context of technological 

change. 

Program Specific Outcomes (PSOs) 

The students will develop an ability to produce the following engineering traits: 
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PSO1: Apply the concepts of Electrical & Electronics Engineering to evaluate the perfor-

mance of power systems and also to control industrial drives using power electronics.

PSO2: Demonstrate the concepts of process control for Industrial Automation, design

models for environmental and social concerns and also exhibit continuous self- learning.



MODULE 1: INTRODUCTION 

Structure 

1.0 Objectives

1.1 Signal and System definition 

1.2 Classification of signals

1.3 Basic Operations on signals

1.4 Elementary signals

       1.5 System viewed as interconnection of operation

         1.6 Properties of system

         1.7 outcomes

         1.8 Further readings

1.0 Objective

 To study the classification of signals.

 To study the operation on signals.

 To study the types of signal.

 To study the properties of a system.
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1.1 Signal and System definition 

A signal is a function representing a physical quantity or variable, and typically it contains 

information about the behavior or nature of the phenomenon. 

For instance, in a RC circuit the signal may represent the voltage across the capacitor or the 

current flowing in the resistor. Mathematically, a signal is represented as a function of an 

independent variable’s’. Usually ‘t’ represents time. Thus, a signal is denoted by x(t). 

A system is a mathematical model of a physical process that relates the input (or excitation) 

signal to the output (or response) signal. 

Let x and y be the input and output signals, respectively, of a system. Then the system is 

viewed as a transformation (or mapping) of x into y. This transformation is represented by the 

mathematical notation 

y= Tx 

where T is the operator representing some well-defined rule by which x is transformed into y. 

Relationship (1.1) is depicted as shown in Fig. 1-1(a). Multiple input and/or output signals are 

possible as shown in Fig. 1-1(b). We will restrict our attention for the most part in this text to the 

single-input, single-output case. 

1.1 System with single or multiple input and outputsignals

1.2 Classification of signals 

Basically seven different classifications are there: 

 Continuous and Discrete time Signals

 Even and Odd Signals

 Random and Deterministic signal

 Power and Energy Signal

 Periodic and non periodic signal

1.2.1 Continuous-Time and Discrete-Time Signals 

A signal x(t) is a continuous-time signal if t is a continuous variable. If t is a discrete variable, 

that is, x(t)isdefinedatdiscretetimes,thenx(t)isadiscrete-timesignal.Sincea 

Discrete-time signal is defined at discrete times, a discrete-time signal is often identified as a 

sequence of numbers, denoted by {x,) or x[n], where n = integer. Illustrations of a continuous- 

time signal x(t) and of a discrete-time signal x[n] are shown in Fig. 1-2. 

1.2 Graphical representation of (a) continuous-time and (b) discrete-time signals
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1.2.2 Deterministic and Random Signals: 

Deterministic signals are those signals whose values are completely specified for any given 

time. Thus, a deterministic signal can be modeled by a known function of time ‘t’. 

Random signals are those signals that take random values at any given time and must be 

characterized statistically. 

1.2.3 Even and Odd Signals 

A signal x( t ) or x[n] is referred to as an even signal if 

x (- t) = x(t) x [-n] = x [n] 

A signal x( t ) or x[n] is referred to as an odd signal if 

x(-t) = - x(t) x[- n] = - x[n] 

Examples of even and odd signals are shown in Fig. 1.3. 

Fig. 1.3: Examples of even signals (a and b) and odd signals (c andd). 

Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even 

and one of which is odd. That is, 

Where, 

 

Department of EEE, ATME College of Engineering Page 7



Similarly for x[n], 

. 

Where, 

Note that the product of two even signals or of two odd signals is an even signal and 

that the product of an even signal and an odd signal is an odd signal. 

1.2.4 Periodic and Non-periodic Signals 

A continuous-time signal x( t ) is said to be periodic with period T if there is a positive 

nonzero value of T for which 

An example of such a signal is given in Fig. 1-4(a). From Eq. (1.9) or Fig. 1-4(a) it follows 

that 

for all t and any integer m. The fundamental period T, of x(t) is the smallest positive value of 

T for which Eq. (1.9) holds. Note that this definition does not work for a constant. 

Fig.1.4: Examples of periodic signals. 

signal x(t) (known as a dc signal). For a constant signal x(t) the fundamental period is 

undefined since x(t) is periodic for any choice of T (and so there is no smallest positive value). 

Any continuous-time signal which is not periodic is called a non-periodic (or periodic)signal. 
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Periodic discrete-time signals are defined analogously. A sequence (discrete-time signal) 

x[n] is periodic with period N if there is a positive integer N for which 

 

 

An example of such a sequence is given in Fig. 1-4(b). From Eq. (1.11) and Fig. 1-4(b) it 

follows that 

 

 
 

for all n and any integer m. The fundamental period Noof x[n] is the smallest positive integer 

N for which Eq.(1.11) holds. Any sequence which is not periodic is called a nonperiodic (or a 

periodic sequence. 
 

 

Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may 

not be periodic. Note also that the sum of two continuous-time periodic signals may not be 

periodic but that the sum of two periodic sequences is always periodic. 

 

1.2.5 Energy and Power Signals 

 

Consider v(t) to be the voltage across a resistor R producing a current i(t). The 

instantaneous power p(t) per ohm is defined as 

…………(1.13) 

Total energy E and average power P on a per-ohm basis are 

 

 

 

 

 

……(1.14) 

 

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is 

defined as 

 

 
 

…………………(1.15) 

The normalized average power P of x(t) is defined as 

(1.16) 

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is 

defined as 

(1.17) 

The normalized average power P of x[n] is defined as 
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Based on definitions (1.15) to (1.18), the following classes of signals are defined: 

1. x(t) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E < m, and 

so P =0. 

2. x(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 < P < m, thus 

implying that E =m. 

3. Signals that satisfy neither property are referred to as neither energy signals nor power 

signals. 

Note that a periodic signal is a power signal if its energy content per period is finite, and 

then the average power of this signal need only be calculated over a period. 
 

 

1.3 Basic Operations on signals 
 

The operations performed on signals can be broadly classified into two kinds 

 Operations on dependent variables  

 Operations on independent variables 
 

1.3.1 Operations on dependent variables 

 

The operations of the dependent variable can be classified into five types: amplitude scaling, addition, 

multiplication, integration and differentiation. 

 

Amplitude scaling 

Amplitude scaling of a signal x(t) given by equation 1.19, results in amplification of x(t) if a >1, and 

attenuation if a <1. 
 

y(t) =ax(t) 

Fig. 1.5: Amplitude scaling of sinusoidal signal 

 

Addition 

The addition of signals is given by equation below. 
y(t) = x1(t) + x2 (t) 

 

Fig.1.6: Example of the addition of a sinusoidal signal with a signal of constant amplitude  
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Physical significance of this operation is to add two signals like in the addition of the background 

music along with the human audio. Another example is the undesired addition of noise along with the 

desired audio signals. 

 

Multiplication 

The multiplication of signals is given by the simple equation of 1.22. 

y(t) = x1(t).x2 (t) 
 

 

 

Fig. 1.7: Example of multiplication of two signals 

 

 

Differentiation 

 

The differentiation of signals is given by the equation below for the continuous. 

 

The operation of differentiation gives the rate at which the signal changes with respect to time, and 

can be computed using the following equation, with Δt being a small interval of time. 

 

 

If a signal doesn‟t change with time, its derivative is zero, and if it changes at a fixed rate with time, 

its derivative is constant. This is evident by the example given in figure 1.8. 
 

 

Fig. 1.8: Differentiation of Sine -Cosine 
 

 

Integration 

 

The integration of a signal x(t) , is given by equation below. 
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Fig. 1.9: Integration of x(t) 

1.3.2 Operations on independent variables 

Time scaling 

Time scaling operation is given by equation, 

y(t)=x(at) 

This operation results in expansion in time for a<1 and compression in time for a>1, as evident 

from the examples of figure 1.10. 

Fig. 1.10: Time scaling of a continuous signal 

Fig. 1.11: Examples of time scaling of a continuous time signal 

An example of this operation is the compression or expansion of the time scale that results in the 

„fast-forward’ or the „slow motion’ in a video, provided we have the entire video in some stored 

form. 
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Time reflection 

Time reflection is given by equation , and some examples is shown in fig 1.12 

y(t)= x(−t) 

 

 
Fig. 1.12:  Example of time reflection of a continuous time signal 

 

 

 

Time shifting 

 

The equation representing time shifting is given by equation (1.28), and example of this 

operation is shown in figure 1.13. 

y(t) = x(t –t0) 
 

Fig. 1.13: Examples of time shift of a continuous time signal 

 

Precedence rule 

The combined transformation of shifting and scaling is contained in equation, an example for 

precedence rule is shown in fig. 1.14 

y(t) = x(at – t0) 
 

 

 

Department of EEE, ATME College of Engineering Page 13



 

Fig. 1.14: Examples of simultaneous time shifting and scaling. The signal has to be shifted first and then 

timescale. 

 

 
1.4 Elementary signals 

Exponential signals: 

The exponential signal given by equation, is a monotonically increasing function if a> 0, and is a 

decreasing function if a < 0. 

 
 

It can be seen that, for an exponential signal, 

 

 

 

Hence, equation (1.30), shows that change in time by ±1/ a seconds, results in change in magnitude by 

e±1 . The term 1/ a having units of time, is known as the time-constant. Let us consider a decaying 

exponential signal 

 

This signal has an initial value x(0) =1, and a final value x(∞) = 0 . The magnitude of this signal at 

five times the time constant is, 

 

While at ten times the time constant, it is as low as, 

               

It can be seen that the value at ten times the time constant is almost zero, the final value of the signal. 

Hence, in most engineering applications, the exponential signal can be said to have reached its final 

value in about ten times the time constant. If the time constant is 1 second, then final value is 

achieved in 10 seconds!! We have some examples of the exponential signal in figure1.15. 
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Fig 1.15: The continuous time exponential signal (a) e−t , (b) et , (c) e−|t| , and (d) e|t| 

 

 

The sinusoidal signal: 

The sinusoidal continuous time periodic signal is given by equation 1.34, and examples are given in 

figure 1.15 

x(t) = Asin(2π ft)  

The different parameters are: 

Angular frequency ω = 2π f in radians, Frequency f in 

Hertz, (cycles per second) Amplitude A in Volts (or 

Amperes) Period T in seconds 

 

 
Fig. 1.16: Sinusoidal Signal 

 

 

The complex exponential: 

 

We now represent the complex exponential using the Euler’s identity (equation (1.35)), 

 
 
 

to represent sinusoidal signals. We have the complex exponential signal given by 

equation (1.36) 

 

 

Since sine and cosine signals are periodic, the complex exponential is also periodic with the same 

period as sine or cosine. From equation (1.36), we can see that the real periodic sinusoidal 

signals can be expressed as: 
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Let us consider the signal x(t) given by equation (1.38). The sketch of this is given in fig 1.15 

 
 

The unit impulse: 

The unit impulse usually represented as δ (t) , also known as the dirac delta function, is given 

by, 

 

Figure 1.17, has the plot of the impulse function 

 
Fig. 1.17: Impulse Signal 

 

 

The unit step: 

The unit step function, usually represented as u(t) , is given by, 

 

 
 

 
 

Fig 1.18: Step Signals 
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The unit ramp: 

The unit ramp function, usually represented as r(t) , is given by, 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.19: Plot of the unit ramp function along with a few of its transformations 

 

 

The signum function: 

The signum function, usually represented as sgn(t) , is given by 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.20: Plot of the unit signal function along with a few of its transformations 
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1.5 System viewed as interconnection of operation: 

 

A system is an interconnection of operations that transforms an input signal into an output signal. 

The properties of these output signals are entirely different from that of the input signal. 

If H is continuous time system 

    x(t) is input signal 

Then output y(t)=H{x(t)} 

Similarly For discrete time system 

y(n)=H{x(n)} 

 
Fig. 1.21: operation of a system 

 
1.6 Properties of system: 

 

In this article discrete systems are taken into account. The same explanation stands for continuous 

time systems also. 

 

The discrete time system: 

The discrete time system is a device which accepts a discrete time signal as its input, transforms it 

to another desirable discrete time signal at its output as shown in figure 1.20 

 

Fig 1.21: DT system 
 

 

 

Stability 

A system is stable if „bounded input results in a bounded output‟. This condition, denoted by 

BIBO, can be represented by: 

 

Hence, a finite input should produce a finite output, if the system is stable. Some examples of 

stable and unstable systems are given in figure 1.21 
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Fig 1.22: Examples for system stability 

 

 

Memory 

The system is memory-less if its instantaneous output depends only on the current input. In 

memory-less systems, the output does not depend on the previous or the future input. 

Examples of memory less systems: 

 
 

 
a) 
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b) 

Fig. 1.23: a) System with memory b) System without memory 

Causality: 

 

A system is causal, if its output at any instant depends on the current and past values of 

input. The output of a causal system does not depend on the future values of input. This can 

be represented as: 

For a causal system, the output should occur only after the input is applied, hence, 

All physical systems are causal (examples in figure 7.5). Non-causal systems do not exist. This 

classification of a system may seem redundant. But, it is not so. This is because, sometimes, it 

may be necessary to design systems for given specifications. When a system design problem is 

attempted, it becomes necessary to test the causality of the system, which if not satisfied, 

cannot be realized by any means. Hypothetical examples of non-causal systems are given in 

figure below. 

 

Fig. 1.24: Example for an causal system 
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Inevitability: 

A system is said to be invertible if the input of the system can be recovered from the system output 

Fig. 1.25: invertible system 

Linearity: 

A system is said to be linear if it satisfies the principle of superposition. 

(t)y(t)ay(t)bx(t)ax

iflinear  is system then the

(t)y(t) x&

(t)y(t) xif

21

H

21

2

H

2

1

H

1







Time invariance: 

A system is time invariant, if its output depends on the input applied, and not on the time of 

application of the input. Hence, time invariant systems, give delayed outputs for delayed inputs. 

)t-(ty)t-(tthen  x

(t)y(t) xif

01

S

01

1

H

1




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1.7 Outcomes 

1. Knowledge on classification of signals.

2. Learnt the basic operation on signals.

3. Knowledge on types of signals.

4. Understand the properties of system.

1.8 Further reading 

1. https://www.youtube.com/watch?v=Gpp_C6f13kw

2. http://nptel.ac.in/courses/117101055/downloads/Lec-4.pdf

3. https://web.iit.edu/sites/web/files/departments/academic-affairs/academic-resource-

center/pdfs/signal_systems_prop.pdf 

4. https://gradestack.com/Circuit-Theory-and/Introduction-to-Different/Different-Types-

of/19344-3926-40307-study-wtw 
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Module-2 Signals & Systems_18EE54

Outline 

2.0 Objectives

2.1 Introduction 

2.2 Convolution 

2.3 Differential equation and Difference equation representation 

2.4 Block Diagram representation 

2.5 Outcomes 

2.6 Further readings 

2.0 Objectives: 

1. Study the convolution of both continuous time and discrete time signals

2. Representing the continuous time system by differential equation and discrete time system by

difference equation 

3. Representation of the system by block diagrams
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2.1 Introduction:

The Linear time invariant (LTI) system: 

Systems which satisfy the condition of linearity as well as time invariance are known as linear time 

invariant systems. Throughout the rest of the course we shall be dealing with LTI systems. If the 

output of the system is known for a particular input, it is possible to obtain the output for a number 

of other inputs. We shall see through examples, the procedure to compute the output from a given 

input-output relation, for LTI systems. 

2.2 Convolution: 

A continuous time system as shown below, accepts a continuous time  signal  x(t) and gives out  a 

transformed continuous time signal y(t). 

Figure 2.1: The continuous time system 

Some of the different methods of representing the continuous time system are: 

i) Differential equation 

ii) Block diagram 

iii) Impulse response

iv) Frequency response

v) Laplace-transform

vi) Pole-zero plot

It is possible to switch from one form of representation to another, and each of the representations 

is complete. Moreover, from each of the above representations, it is possible to obtain the system 

properties using parameters as: stability, causality, linearity, inevitability etc. We now attempt to 

develop the convolution integral. 

2.2.1 Convolution Sum:

We now attempt to obtain the output of a digital system for an arbitrary input x[n], from 

the knowledge of the system impulse response h[n]. 
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Fig. 2.2: Impulse response of a LTI system 

 

 

 

 

 

 
 

 
Fig. 2.3: Time domain analysis of a LTI system 
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Methods of evaluating the convolution sum: 

Given the system impulse response h[n], and the input x[n], the system output y[n], is 

given by the convolution sum: 
 

Problem: 

To obtain the digital system output y[n], given the system impulse response h[n], and the 

system input x[n] as: 
 

h[n]=[1,-1.5,3] 

x[n]=[-1,2.5,0.8,1.25] 

y[n]=[-1,4,-5.95,7.55,0.525,3.75] 
 

1. Evaluation as the weighted sum of individual responses 

The convolution sum of equation can be equivalently represented as: 
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Convolution as matrix multiplication: 

 

Given 
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Evaluation using graphical representation: 

 

Another method of computing the convolution is through the direct computation of each value of the 

output y[n]. This method is based on evaluation of the convolution sum for a single value of n, and 

varying n over all possible values. 
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2.2.2 Evaluation from direct convolution sum: 

 

While small length, finite duration sequences can be convolved by any of the above three methods, 

when the sequences to be convolved are of infinite length, the convolution are easier performed by 

direct use of the „convolution sum‟ of equation (…). 
 

Example: A system has impulse response h[n] exp( 0.8n)u[n] . Obtain the unit step 

response. 

Solution: 
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Department of EEE, ATME College of Engineering Page 10
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2.2.3 Convolution Integral: 

 

We now attempt to obtain the output of a continuous time/Analog digital system for an arbitrary 

input x(t), from the knowledge of the system impulse response h(t), and the properties of the impulse 

response of an LTI system. 
 

 

 

Methods of evaluating the convolution integral: (Same as Convolution sum) 

 

Given the system impulse response h(t), and the input x(t), the system output y(t), is given by the 

convolution integral: 
 

Some of the different methods of evaluating the convolution integral are: Graphical representation, 

Mathematical equation, Laplace-transforms, Fourier Transform, Differential equation, Block 

diagram representation, and finally by going to the digital domain. 
 

 

2.3 Differential equation and Difference equation representation: 

 

General form of differential equation is 
 

 

whereakand bkare coefficients, x(.) is input and y(.) is output and order of differential or difference 

equation is (M,N). 

 

Example of Differential equation 

• Consider the RLC circuit as shown in figure below. Let x(t) be the input voltage source and 
y(t) be the output current. Then summing up the voltage drops around the loop gives 
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Fig. 2.4: RLC Circuit 

 

 
2.3.1 Solving differential equation: 

 

A wide variety of continuous time systems are described the linear differential equations: 
 

 Just as before, in order to solve the equation for y(t), we need the ICs. In this case, the ICs are 

given by specifying the value of y and its derivatives 1 through N −1 at t =0− 

 Note: the ICs are given at t = 0− to allow for impulses and other discontinuities at t =0. 

 Systems described in this way are 

 linear time-invariant (LTI): easy to verify by inspection 

 Causal: the value of the output at time t depends only on the output and the input at times 0 ≤ 

t ≤ t 

 Asinthecaseofdiscrete-timesystem,thesolutiony(t)canbedecomposedintoy(t)= 

yh(t)+yp(t) , where homogeneous solution or zero-input response (ZIR), yh(t) satisfies 

the equation 
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2.3.2 Difference equation representation: 
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Initial Conditions 

Initial Conditions summaries all the information about the systems past that is needed to 

determine the future outputs. 
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Fig. 2.5: Step response of a system 
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2.4 Block Diagram representation: 
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Fig. 2.6: Time shift and Integration symbol 

Fig. 2.7: Direct form-I representation 

Fig. 2.8: Direct form-I representation of Example 1 
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Fig. 2.9: Direct form-I representation 
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Fig. 2.10: Direct form-II representation 
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2.5 Outcomes: 

1. Knowledge on the impulse response of a LTI system

2. Knowledge on representing continuous and discrete time system by differential and difference

equations 

3. Knowledge on block diagram representation of continuous and discrete time systems.

2.6 Further reading 

1. http://mathworld.wolfram.com/Convolution.html

2. http://colah.github.io/posts/2014-07-Understanding-Convolutions/

3. https://www.khanacademy.org/math/differential-equations/laplace-transform/convolution-

integral/v/introduction-to-the-convolution 

4. http://fivedots.coe.psu.ac.th/Software.coe/240-381/slide/DSPCh6.pdf

5. https://www.youtube.com/watch?v=YnV4DlBzvls
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