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INSTITUTIONAL VISION AND MISSION

VISION:

e Development of academically excellent, culturally vibrant, socially responsible and
globally competent human resources.

MISSION:

e To keep pace with advancements in knowledge and make the students competitive
and capable at the global level.

e To create an environment for the students to acquire the right physical, intellectual,
emotional and moral foundations and shine as torchbearers of tomorrow's society.

e To strive to attain ever-higher benchmarks of educational excellence.

Department Vision and Mission
Vision:

To create Electrical and Electronics Engineers who excel to be technically competent and

fulfill the cultural and social aspirations of the society.
Mission:

e To provide knowledge to students that builds a strong foundation in the basic
principles of electrical engineering, problem solving abilities, analytical skills, soft
skills and communication skills for their overall development.

e To offer outcome based technical education.

e To encourage faculty in training & development and to offer consultancy through
research & industry interaction.
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Program Educational Objectives (PEOs)

PEOL1:

To produce Electrical and Electronics Engineers who will exhibit the technical and
managerial skills with professional ethics for the societal progress.

PEOZ2:

To make students continuously acquire, enhance their technical and socio-economic skills
and also to be globally competent.

PEO3:

To impart the experience of research and development to students so that they develop
abilities in offering solutions to relevant diverse career path.

PEOA4:

To produce quality engineers with a team leading capabilities, also show good coordination

to contribute towards real time application of projects

Program Outcomes (POs)

Engineering Graduates will be able to:

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals and an engineering specialization to the solution of complex
engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first principles of
mathematics, natural sciences, and engineering sciences.

PO3: Design / Development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs with
appropriate consideration for the public health and safety, and the cultural, societal, and
environmental considerations.

PO4: Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of data, and
synthesis of the information to provide valid conclusions.

PO5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex

engineering activities with an understanding of the limitations.
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POG6: The engineer and society: Apply reasoning informed by the contextual knowledge
to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

PO7: Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

PO9: Individual and team work: Function effectively as an individual and as a member
or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to comprehend
and write effective reports and design documentation, make effective presentations, and
give and receive clear instructions.

PO11: Project management and finance: Demonstrate knowledge and understanding of
the engineering management principles and apply these to one’s own work, as a member
and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long learning: Recognize the need for and have the preparation and ability to
engage in independent and lifelong learning in the broadest context of technological

change.

Program Specific Outcomes (PSOs)

The students will develop an ability to produce the following engineering traits:

PSO1: Apply the concepts of Electrical & Electronics Engineering to evaluate the perfor-
mance of power systems and also to control industrial drives using power electronics.
PSO2: Demonstrate the concepts of process control for Industrial Automation, design
models for environmental and social concerns and also exhibit continuous self- learning.
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MODULE 1: INTRODUCTION

Structure

1.0 Objectives

1.1 Signal and System definition

1.2 Classification of signals

1.3 Basic Operations on signals

1.4 Elementary signals

1.5 System viewed as interconnection of operation
1.6 Properties of system

1.7 outcomes

1.8 Further readings

1.0 Objective
» To study the classification of signals.
» To study the operation on signals.
» To study the types of signal.

» To study the properties of a system.
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Module-1_S & DSP BEE502
1.1 Signal and System definition

A signal is a function representing a physical quantity or variable, and typically it contains
information about the behavior or nature of the phenomenon.

For instance, in a RC circuit the signal may represent the voltage across the capacitor or the
current flowing in the resistor. Mathematically, a signal is represented as a function of an
independent variable’s’. Usually ‘t’ represents time. Thus, a signal is denoted by x(t).

A system is a mathematical model of a physical process that relates the input (or excitation)
signal to the output (or response) signal.

Let x and y be the input and output signals, respectively, of a system. Then the system is
viewed as a transformation (or mapping) of x into y. This transformation is represented by the
mathematical notation

y=TX

where T is the operator representing some well-defined rule by which x is transformed into y.
Relationship (1.1) is depicted as shown in Fig. 1-1(a). Multiple input and/or output signals are
possible as shown in Fig. 1-1(b). We will restrict our attention for the most part in this text to the
single-input, single-output case.

System
T

- : System

¥
o
—Il-
{a) il

1.1 System with single or multiple input and outputsignals
1.2 Classification of signals

Basically seven different classifications are there:

Continuous and Discrete time Signals
Even and Odd Signals

Random and Deterministic signal
Power and Energy Signal

Periodic and non periodic signal

VVVYY

1.2.1 Continuous-Time and Discrete-Time Signals

A signal x(t) is a continuous-time signal if t is a continuous variable. If t is a discrete variable,
that is, x(t)isdefinedatdiscretetimes,thenx(t)isadiscrete-timesignal.Sincea

Discrete-time signal is defined at discrete times, a discrete-time signal is often identified as a
sequence of numbers, denoted by {x,) or x[n], where n = integer. lllustrations of a continuous-
time signal x(t) and of a discrete-time signal x[n] are shown in Fig. 1-2.

Allgl.

1.2 Graphical representation of (a) continuous-time and (b) discrete-time signals
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1.2.2 Deterministic and Random Signals:

Deterministic signals are those signals whose values are completely specified for any given
time. Thus, a deterministic signal can be modeled by a known function of time “t’.

Random signals are those signals that take random values at any given time and must be
characterized statistically.

1.2.3 Even and Odd Signals

A signal x(t) or x[n] is referred to as an even signal if
X (-t) =x(t) x [-n] = x [n]
A signal x(t) or x[n] is referred to as an odd signal if
X(-t) = - x(t) X[- n] = - X[n]
Examples of even and odd signals are shown in Fig. 1.3.

] xin|
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Fig. 1.3: Examples of even signals (a and b) and odd signals (c andd).

Any signal x(t) or X[n] can be expressed as a sum of two signals, one of which is even
and one of which is odd. That is,

x(t)=x,(1)+x ()
Where, _
x,(1) = %[ x(1) +x(-1))

1
X,(1) = 5\ xX(1)—x(-1))
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Similarly for x[n],

x[n]=x,[n]+x [n]

Where,

x,[n]= %( x[n]+x[-n])

x,[n]= %( x{n]—x[-n])

—

Note that the product of two even signals or of two odd signals is an even signal and
that the product of an even signal and an odd signal is an odd signal.

1.2.4 Periodic and Non-periodic Signals

A continuous-time signal x(t) is said to be periodic with period T if there is a positive
nonzero value of T for which

x(t+T)=x(1) all ¢

An example of such a signal is given in Fig. 1-4(a). From Eqg. (1.9) or Fig. 1-4(a) it follows
that

x(t +mT)=x(1)

for all t and any integer m. The fundamental period T, of x(t) is the smallest positive value of
T for which Eq. (1.9) holds. Note that this definition does not work for a constant.

27 7 0 7 27 !

_[ILI\IJII_!IL,{ILT

(b)
Fig.1.4: Examples of periodic signals.
signal x(t) (known as a dc signal). For a constant signal x(t) the fundamental period is

undefined since x(t) is periodic for any choice of T (and so there is no smallest positive value).
Any continuous-time signal which is not periodic is called a non-periodic (or periodic)signal.

Department of EEE, ATME College of Engineering Page 8



Periodic discrete-time signals are defined analogously. A sequence (discrete-time signal)
x[n] is periodic with period N if there is a positive integer N for which

x[n+N]=x[n] all n

An example of such a sequence is given in Fig. 1-4(b). From Eq. (1.11) and Fig. 1-4(b) it
follows that

x{n+mN| =x[n|

for all n and any integer m. The fundamental period Noof x[n] is the smallest positive integer
N for which Eq.(1.11) holds. Any sequence which is not periodic is called a nonperiodic (or a
periodic sequence.

Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may
not be periodic. Note also that the sum of two continuous-time periodic signals may not be
periodic but that the sum of two periodic sequences is always periodic.

1.2.5 Energy and Power Signals

Consider v(t) to be the voltage across a resistor R producing a current i(t). The
instantaneous power p(t) per ohm is defined as
v(t)i(r)
R

=i%(1)

p(r)=

Total energy E and average power P on a per-ohm basis are

E=[ i(t)dt joules

T

| S 77
P= lim — i%(t)dt watts
Tf-r/z (1)

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is
defined as

E=[ |x(t)] dt
The normalized average power P of x(t) is defined as

1 T/2 3
P= lim — '
im Tf T/zlx(t)! dt

T e

(1.16)
Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is
defined as
E= T |x[n]f
W (1.17)

The normalized average power P of x[n] is defined as
M

1 2
P=li
Jim S ZNir[n]I

H= —
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Based on definitions (1.15) to (1.18), the following classes of signals are defined:
1. x(t) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E <m, and
so P =0.
2. X(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 <P <m, thus
implying that E =m.
3. Signals that satisfy neither property are referred to as neither energy signals nor power

signals.
Note that a periodic signal is a power signal if its energy content per period is finite, and
then the average power of this signal need only be calculated over a period.

1.3 Basic Operations on signals

The operations performed on signals can be broadly classified into two kinds
» Operations on dependent variables
» Operations on independent variables

1.3.1 Operations on dependent variables

The operations of the dependent variable can be classified into five types: amplitude scaling, addition,
multiplication, integration and differentiation.

Amplitude scaling
Amplitude scaling of a signal x(t) given by equation 1.19, results in amplification of x(t) if a >1, and

attenuation if a <1.

y(t) =ax(t)

= 2 2 2
™
B
) S S
= > >
|2 0/\/\/\/ 5" = BN R R
1 I o
oy |
X 2 -2 -2

0 05 1 0 0.5 1 0 0.5 1

t (time in seconds) t (time in seconds) t (time in seconds)

Fig. 1.5: Amplitude scaling of sinusoidal signal

Addition
The addition of signals is given by equation below.
y(t) = x1(t) + x2 (1)

3

| R e—— 5l
b3
N 4 =
r=4 b >
) L | Bt S i +
n = =
= = il
T Y D —

-2 A ] TR S 25 e

0 0.5 1 0 0.5 1 =5 e i
t (time in seconds) t (time in seconds) t (time in seconds)

Fig.1.6: Example of the addition of a sinusoidal signal with a signal of constant amplitude
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Physical significance of this operation is to add two signals like in the addition of the background
music along with the human audio. Another example is the undesired addition of noise along with the

desired audio signals.

Multiplication
The multiplication of signals is given by the simple equation of 1.22.

y(t) = x1(t).x2 (1)

g | g 1

B Q -
o o =
R >
c x

I I 73
P =

Rl ot

= > -1 A

0 0.5 1

0 0.5 1 : ; 0 0.5 1
t {time in seconds : g

t (time in seconds) ( ) t (time in seconds)

Fig. 1.7: Example of multiplication of two signals

Differentiation
The differentiation of signals is given by the equation below for the continuous.
d
(1) =—x(t
v(1) Z x(7)

The operation of differentiation gives the rate at which the signal changes with respect to time, and
can be computed using the following equation, with At being a small interval of time.

x(t + At)—x(7)
At

d :
Ex(r) = ‘Exﬂ

If a signal doesn“t change with time, its derivative is zero, and if it changes at a fixed rate with time,
its derivative is constant. This is evident by the example given in figure 1.8.

1— | 4+ -
ff\;,r\ 3,%2/5} ! ’ / > 1
7 i

2

Fig. 1.8: Differentiation of Sine -Cosine

Integration

The integration of a signal x(t) , is given by equation below.
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t

()= [ x(e)r
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1.5 =~ 15
x
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E =

< 1 % 1
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0.5} = 98

0 0
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() (b)
Fig. 1.9: Integration of x(t)

1.3.2 Operations on independent variables
Time scaling
Time scaling operation is given by equation,
y(t)=x(at)

This operation results in expansion in time for a<1 and compression in time for a>1, as evident
from the examples of figure 1.10.

0.6
0.4
0.2

X(t2)
o

-0.2
-0.4

-0.6

o] 1 2 3 4 o] 1 2 3 4
t (time in seconds) t (time in seconds)

Fig. 1.10: Time scaling of a continuous signal

1.5 1.5
1 1
0.5 0.5
g o & o
0.5 0.5
- -1

% 1 2 3 a 5 3% 1 2 3 a 5

t (time in seconds) t (time in seconds)

Fig. 1.11: Examples of time scaling of a continuous time signal
An example of this operation is the compression or expansion of the time scale that results in the

Lfast-forward’ or the ,,slow motion’ in a video, provided we have the entire video in some stored
form.
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Time reflection
Time reflection is given by equation , and some examples is shown in fig 1.12

y(t)=x(-t)

x(-t)

Ao

B : 2 H E E
2 1 0 1 2 -2 -1 0 1 2
t (time in seconds) t (time in seconds)

Fig. 1.12: Example of time reflection of a continuous time signal

Time shifting

The equation representing time shifting is given by equation (1.28), and example of this
operation is shown in figure 1.13.

y(t) = X(t —to)

X(t)
x(t+1)

3 . 3 - :
4 2 0 2 4 4 2 0 2 4
t (time in seconds) t (time in seconds)

Fig. 1.13: Examples of time shift of a continuous time signal
Precedence rule

The combined transformation of shifting and scaling is contained in equation, an example for
precedence rule is shown in fig. 1.14

y(t) = x(at — to)

=y(2t)

y(t)=x(t-4)

x(2t-4)

-5 0 5 -5 0 5 -5 0 5
t (time in seconds) t (time in seconds) t (time in seconds)
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Fig. 1.14: Examples of simultaneous time shifting and scaling. The signal has to be shifted first and then
timescale.

1.4 Elementary signals
Exponential signals:

The exponential signal given by equation, is a monotonically increasing function if a> 0, and is a
decreasing function if a < 0.

x(7) = e”
It can be seen that, for an exponential signal,

x(t+a™')=ex(r)

x(t—a)=e" x(1)

Hence, equation (1.30), shows that change in time by +1/ a seconds, results in change in magnitude by
e+l . The term 1/ a having units of time, is known as the time-constant. Let us consider a decaying
exponential signal

x(t)y=e“

for 1=0.

This signal has an initial value x(0) =1, and a final value x(oc) = 0 . The magnitude of this signal at
five times the time constant is,

x(5/a)=06.7x10"
While at ten times the time constant, it is as low as,
x(10/a)=4.5x10"

It can be seen that the value at ten times the time constant is almost zero, the final value of the signal.
Hence, in most engineering applications, the exponential signal can be said to have reached its final
value in about ten times the time constant. If the time constant is 1 second, then final value is
achieved in 10 seconds!! We have some examples of the exponential signal in figurel.15.

expl)
explt

-2 -1 o 1 2
time (sec) time (sec)

) ()

expl{t)
exp{lt)
5

-2 o 2
time (sec) time (sec)

© @
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Fig 1.15: The continuous time exponential signal (a) e, (b) e, (c) e, and (d) e!

The sinusoidal signal:
The sinusoidal continuous time periodic signal is given by equation 1.34, and examples are given in
figure 1.15

X(t) = Asin(2x ft)

The different parameters are:

Angular frequency = 2z f in radians, Frequency f in
Hertz, (cycles per second) Amplitude A in Volts (or
Amperes) Period T in seconds

Period =T

Asin(27 fi)

— T=1/f ——

time (sec)

Fig. 1.16: Sinusoidal Signal

The complex exponential:

We now represent the complex exponential using the Euler’s identity (equation (1.35)),
e’’ =(cosO+ jsin )

to represent sinusoidal signals. We have the complex exponential signal given by
equation (1.36)

&/ =(cos(art)+ jsin(ar))

e " =(cos(ar)— jsin(awr))

Since sine and cosine signals are periodic, the complex exponential is also periodic with the same
period as sine or cosine. From equation (1.36), we can see that the real periodic sinusoidal
signals can be expressed as:

Jjoot —jot

e +e
cos(ar) =
2
) ejwr _ efjmr
sin(r) = :
2]
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Let us consider the signal x(t) given by equation (1.38). The sketch of this is given in fig 1.15
x(t) = A(t)e’’"”

The unit impulse:
The unit impulse usually represented as 6 (t) , also known as the dirac delta function, is given

by,

§()=0 for t=0; and Jé‘(r)drzl

—o0

Figure 1.17, has the plot of the impulse function

2 2} ;
1.5 ' 1.5 e
- ~
1 4 s mmnisiginsimn iy inini @rimiin g (] e LY
: o
3 N ; :
0.5} vl 0.5 e T :
0 0
-2 -1 0 1 2 -2 -1 0 1 2
t (sec) t (sec)

Fig. 1.17: Impulse Signal

The unit step:
The unit step function, usually represented as u(t) , is given by,

O {1 t>0
u =
0

t<0
2 2
1.5} 15
-
~
= =
s 1 < 1
“
0.5 T o5
o [
2 1 0 1 2 2 1 o 1 2
t (sec) t( sec)
(a) (b)
2| 2
1.5 15
& 3 51
3 a
0.5} 0.5
0 0
2 1 0 1 2 2 - 0 1 2
t(sec) t{sec)

(c) (d)

Fig 1.18: Step Signals
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The unit ramp:
The unit ramp function, usually represented as r(t) , is given by,

t t=20
r(t) =
0 t<0
2 i
-1 o
= ifb - A
LR . - . /
=] 5 - - -
=1 -5 l:ln [N 1 il
t{=ec) [ mme )
(o) )y
4F 4
E]
= T
kol = =z ! 4
= ]
T /
al _F-"’df’
-2 -1 L] 1 2 -2 -1 o 1 =z
tl sca ) tfaee )

(<} (d)
Fig 1.19: Plot ot the unit ramp function along with a tew ot I1ts transtormations

The signum function:
The signum function, usually represented as sgn(t) , is given by

1 t>0
sgn(t)=40 ¢t=0
-1 <0
2 2
1 1
‘:; 0| g 4
-1 1
39! 2
2 1 0 1 2 2 1 o 1 2
t(sec) t(sec)
(a) (b)
2 2
1 1
$ z
fo o
2 2
1 1
=2 I ) 1 2 = A 0 1 2
t(sec) t(sec)

(<) @)

Fig 1.20: Plot of the unit signal function along with a few of its transformations
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1.5 System viewed as interconnection of operation:

A system is an interconnection of operations that transforms an input signal into an output signal.
The properties of these output signals are entirely different from that of the input signal.
If H is continuous time system
X(t) is input signal
Then output y(t)=H{x(t)}
Similarly For discrete time system

y(n)=H{x(n)}

v(t)

x(t) }: H z/ .

Fig. 1.21: operation of a system

1.6 Properties of system:

In this article discrete systems are taken into account. The same explanation stands for continuous
time systems also.

The discrete time system:
The discrete time system is a device which accepts a discrete time signal as its input, transforms it
to another desirable discrete time signal at its output as shown in figure 1.20

) . oulpul

input Disrete fime r

— "
system

xIn| ¥[n]

Fig 1.21: DT system

Stability
A system is stable if ,,bounded input results in a bounded output™. This condition, denoted by
BIBO, can be represented by:

> |.1'[n] <o implies |}'[n]

n=—us n=—us

<oo  for all n

Hence, a finite input should produce a finite output, if the system is stable. Some examples of
stable and unstable systems are given in figure 1.21
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Stable system

2 . 2
y[n] = ¢
e R G g ;| S s g .
= I = T
[ S H H
o ooole e0o 2 TTT??oong.‘.,. 5
5 3 :
£ 3 :
- v e H
2 : :
s o 5 10 15 5 0 5 10 15
n n

Unstable system

8
vin] = e 0-In
6 6
Y S S [ T Y. . o b
o 3
= o)
S RS - B ol ”’]’”H
ooooeoToeooe)ooooéoooo u.oooeTTTTT..TTT LLL
2 : H - :
=5 0 S 10 15 5 0 5 10 15
n n

Fig 1.22: Examples for system stability

Memory
The system is memory-less if its instantaneous output depends only on the current input. In
memory-less systems, the output does not depend on the previous or the future input.
Examples of memory less systems:
yln]= ax[n]
yn]=ax’[n]

iln]= a, +ayv[n] +a31=3[n] +a]v'1[n] +.....

8 8
¥o] = xo] + x[n-1]
L G
%4 z .
' 1t Sl
- 2
a»oo—r —E. T—oooo :ef 8? 1
-2 -2
< Q o 10 5 ] S 10
» Systemm with Memony o
18 15 -
Mnl= Y xim]
T L 4
E!O - 10
g s Z s [
inO?To.?TTT?OOOOOOOOU -AYTTII
- o s 10 15 -5 0 S 10 15

n System with NMemory =

a)
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=

¥[n] = 2x|n]

6 6
= s
g | o vl o [t o |
g £
<
OPOOT O&T TOOO<> 9 oo °L o0oo0o¢
Y, ] -2
-5 aQ S 10 -5 0 s 10
n n

Memaoryless system

10 10 —
yin)=xfn] "~

8 8

a4 24 :

= 3
Tt ’ ] ”
omn:’T oér Toooo oooo:>T c:>°T :Toooo

0 6

5 10 ] 0 S 10

" n
Memoryiess system

b)
Fig. 1.23: a) System with memory b) System without memory
Causality:

A system is causal, if its output at any instant depends on the current and past values of
input. The output of a causal system does not depend on the future values of input. This can
be represented as:

For a causal system, the output should occur only after the input is applied, hence,

All physical systems are causal (examples in figure 7.5). Non-causal systems do not exist. This
classification of a system may seem redundant. But, it is not so. This is because, sometimes, it
may be necessary to design systems for given specifications. When a system design problem is
attempted, it becomes necessary to test the causality of the system, which if not satisfied,

cannot be realized by any means. Hypothetical examples of non-causal systems are given in
figure below.

Causal system

b @ po-e-a-o

input: x[n|
< =X N
o :
o H
o
]
—e
o
o
-
o
o
el
-}
oulput: y[n]
- N
y :
]
> :
> i : :
A
_lq
—o
-]
o
2] :

3 : : P :
5 0 5 10 -5 0 5 10
n n

Fig. 1.24: Example for an causal system
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Inevitability:

A system is said to be invertible if the input of the system can be recovered from the system output

input output input Inverse output
—_— System: A — —_— of —
x|n| ¥[n] y[n] System A s|n]

Fig. 1.25: invertible system

Linearity:
A system is said to be linear if it satisfies the principle of superposition.

if x, () —— V. (1)

&X, ([0 ——Y, (1)

then the system is linear if

ax, () + bx, () ——>ay, () +, (1)

Time invariance:

A system is time invariant, if its output depends on the input applied, and not on the time of
application of the input. Hence, time invariant systems, give delayed outputs for delayed inputs.

if X, () ——y,(0)
then x,(t-t,)—>y,(t-t,)
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1.7 Outcomes

Knowledge on classification of signals.
Learnt the basic operation on signals.

Knowledge on types of signals.

> 0w bh e

Understand the properties of system.

1.8 Further reading

1. https://www.youtube.com/watch?v=Gpp_C6f13kw

2. http://nptel.ac.in/courses/117101055/downloads/Lec-4.pdf

3. https://web.iit.edu/sites/web/files/departments/academic-affairs/academic-resource-
center/pdfs/signal_systems_prop.pdf

4. https://gradestack.com/Circuit-Theory-and/Introduction-to-Different/Different-Types-
0f/19344-3926-40307-study-wtw
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MODULE 1 (b) : Time-Domain Representations For LTI

Systems

Outline

2.0 Objectives

2.1 Introduction

2.2 Convolution

2.3 Differential equation and Difference equation representation
2.4 Block Diagram representation

2.5 Outcomes

2.6 Further readings

2.0 Objectives:

1. Study the convolution of both continuous time and discrete time signals

2. Representing the continuous time system by differential equation and discrete time system by
difference equation

3. Representation of the system by block diagrams
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Module-1 (b) S & DSP BEE502

2.1 Introduction:

The Linear time invariant (LTI) system:

Systems which satisfy the condition of linearity as well as time invariance are known as linear time
invariant systems. Throughout the rest of the course we shall be dealing with LTI systems. If the
output of the system is known for a particular input, it is possible to obtain the output for a number
of other inputs. We shall see through examples, the procedure to compute the output from a given
input-output relation, for LTI systems.

2.2 Convolution:

A continuous time system as shown below, accepts a continuous time signal x(t) and gives out a
transformed continuous time signal y(t).

input Continuous time output
— ¢ —>
X(t) syVsiem v (t)

Figure 2.1: The continuous time system

Some of the different methods of representing the continuous time system are:

i) Differential equation
i) Block diagram

iii) Impulse response

Iv) Frequency response
V) Laplace-transform

Vi) Pole-zero plot

It is possible to switch from one form of representation to another, and each of the representations
is complete. Moreover, from each of the above representations, it is possible to obtain the system
properties using parameters as: stability, causality, linearity, inevitability etc. We now attempt to

develop the convolution integral.

2.2.1 Convolution Sum:

We now attempt to obtain the output of a digital system for an arbitrary input x[n], from
the knowledge of the system impulse response h[n].
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input
—
x|n]

An input

v[n]

impulse response

output
—

¥[n]

Mnl=... oA 1l8n
= #0]élA]
= x{ldln-1]

v

1]

- 216Tn - 2]

An input

x|n]

impulse response

corresponding output

¥inl

LTI system

xnl= 3 m)bln—m]

o

imput

A}

et X =1 n=1]
- x{OJh[m]
cx1)fn 1]
H2)an 2] ...

Hnl

Fig. 2.2: Impulse response of a LTI system

> h(n]

LTT svstem

impulse respense

corresponding output

¥[n]

>

(Ll
vn|= z x|m|h|rn—m|

|

time-ifeamin anelyses

x[n]

d h[n)

LTI systema

impulse response

n-utput

4

yln] = x{n]*Aln]

vln]= x[n]*h[n]

Fig. 2.3: Time domain analysis of a LTI system

Department of EEE, ATME College of Engineering

Page 3



Methods of evaluating the convolution sum:
Given the system impulse response h[n], and the input x[n], the system output y[n], is
given by the convolution sum:

yln]= i x[m]hln—m]
Problem:
To obtain the digital system output y[n], given the system impulse response h[n], and the
system input x[n] as:

h[n]=[1,-1.5,3]
x[n]=[-1,2.5,0.8,1.25]
y[n]=[-1,4,-5.95,7.55,0.525,3.75]

1. Evaluation as the weighted sum of individual responses
The convolution sum of equation can be equivalently represented as:

input x[n] impulse response: h[n]
10 T T T 10 T r T
6 i ]
5 £ :
-2}
4} : i a4
_s I _6 i
-2 0 2 4 6 -2 0 2 4 6
n n
h[n+1] x[-1]-h[n+1]
10 10
£l T £ f
< 1 oo 8o - 3 l o—o—g—©
-5 -5
-2 0 2 4 6 -2 0 2 4 6
n n
h[n] %x[0].h[n]
10 10
6 — B
_ £
2 I 5o o1
< od o ? L o @ o ¢ 2 0 o l o 9 ©P
-2 0 2 4 -] 2 0 2 4 6
n n
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hin-1] x[11.h[n-1]

hin-1]

0.8 h{n-1]

S} - -5
-2 o 2 4 B -2 o 2 4 6
n n
h[n-2] x[2].h[n-2]
10 v 10 r
5 0] SEAEGHIS a 6 e
g £ T
g , 7 £
£ 0§ o o o ? i o ¢ & 04 o o o ? L o
s} s}
-2 0 2 4 e -2 0 2 4 6
n n

Convolution as matrix multiplication:

Given
xnl=[x, x . x] starting from N,
and
Anl=[h hy, .. h,] starting from N,
Step 1: Length of convolved sequence 1s NUM = (L+M-1)
Step 2: The convolved sequence starts at i=N, + N,
Step 3: The convolution 1s given by the following matrix multiplication
il T [x 0 0] “h 0O 0]
vli+1] X, X 0. - | h §” 01 _
X
i+2l| |x x 0 :f h, h, 0"
Mi+3| | . o™ h, 07"
vli+4] . h,
vli+ 5] X, - - . x|’ h,, h,
hM tf
0 x - 0 &, -
. ] [0 0 X, | 10 0 h, |
Department of EEE, ATME College of Engineering
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The dimensions of the above matrices are:
[NUM by l]=[NUM by M][M by 1]=[NUM by L][L by l]

For the given example:
x[n] is of length [.=4, and starts at N, =-1

h[n] is of length M=3 and starts at N,,=0

Step 1: Length of convolved sequence is NUM = (L+M-1)=6
Step 2: The convolved sequence starts at i=(-14+0)=(-1)
yi-11] [ -1 0 0 ] [ -1 ]
y[0] 25 -1 0 1 4
y[1] | 08 25 -1 152 -5.95
y[2] 1.25 0.8 25 i 3
y[3] 0 125 08 0.525
L y4]1 ] | O 0 1.25] | 3.75 |
or
y-11] [ 1 0 0 0 | | o3 |
y[0] -1.5 1 0 0 |[-1] 4
y[1] 3 -15 1 0 || 2.5 -5.95
M2 10 3 -15 1 | 7.55
y[3] 0 0 3 -15(1.25] |0.525
| y4l1] | O 0 0 3 | 3.75 |

Evaluation using graphical representation:

Another method of computing the convolution is through the direct computation of each value of the
output y[n]. This method is based on evaluation of the convolution sum for a single value of n, and
varying n over all possible values.

o

yln]= "> x[mlhln—m]

=

Step 1: Sketch x[m]
Step 2: Sketch h[-m]
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Step 3:

Step 4:
Step 5:

Step 6:
Step 7:

Step 8:

Step 9:
Step 10:

Step 11:
Step 12:

Step 13:

Compute y[0] using:

y0]= > x{m]h[-m]

which is the ‘sum of the product of the two signals x[m] & h[-m]’
Sketch h[1-m], which is right shift of h[-m] by 1.
Compute y[1] using:

oo

1= Z x[m]h[1—m]

which is the ‘sum of the product of the two signals x[m] & h[1-m]’
Sketch h[2-m], which is right shift of h[-m] by 2.
Compute y[2] using:

y[2]= i x[m]h|2—m]

m=—co

which is the ‘sum of the product of the two signals x[m] & h[2-m]’

Proceed this way until all possible values of y[n], for positive ‘n’

computed
Sketch h[-1-m], which is left shift of h[-m] by 1.
Compute y[-1] using:

yl-1]= i x[m]h[—1—m]

n=—oa

which is the ‘sum of the product of the two signals x[m] & h[-1-m]’

Sketch h[-2-m], which is left shift of h[-m] by 2.
Compute y[-2] using:

o

y[-2]= Z x[m]h[-2—m]

m=—ca

which is the ‘sum of the product of the two signals x[m] & h[-2-m]’

Proceed this way until all possible values of y[n], for negative ‘n’ are

computed
x[m] h[-1-m] y[-11=(-1)
10 : 10 : 10 .
= ? e T, = :
f >
5 0 5 5 0 5 -5 a 5
m m m
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x[m] h[-m] v[0]=(1.5+2.5)
10 . 10 :

-

h O

5@-0
?
h{-m]
%m
? :
x[m].h[-m]
b ?
%.,
0
9
9
:

x[m] h[1-m]

yv[11=({-3-3.75+0.8})
10

th

X[m]
h[1-m]
x[m].h[1-m]

x[m] h[2-m] y[2]=(7.5-1.2+1.25)
10 j 10

X[m]
hj2-m]
_L |
x[m].h[2-m]

x[m] h[3-m] ¥[3]=(2.4-1.875)
10 10 10

Op oo c>-‘:>-¢_:>-T oo
- &

x{m].h[3-m]

5 -5 5

a
m

x[m] h[4-m] vI4]1=(3.75)
10 : 10 v

X[m]
h[4-m]
g
X[m].h[4-m]

3 of
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Output: y[nj=x[-1].h[n+1]+x[0] h[n}+x[1).h[n-1]+x[2].h[n-2]

10 : ! : v v
8' ‘j' ' -
6} : ]
E 2 b <
~ ;
1 L ! o
4} £ i
-2 -1 0 1 2 3 4 5 €
n

2.2.2 Evaluation from direct convolution sum:

While small length, finite duration sequences can be convolved by any of the above three methods,
when the sequences to be convolved are of infinite length, the convolution are easier performed by
direct use of the ,,convolution sum® of equation (...).

0 for m<0

since: N[m]="]l for m>0

-

for (n—-m)<0

for (n—m)z=0

B {{] for (—m)<n
1 for (-m)zn

B {{] for m>n

1 for m=n

uln—ml= |

Example: A system has impulse response h[n] [JCexp(J0.8n)u[n] . Obtain the unit step
response.
Solution:

yln]= Z hlm|x|m]

m=—so

= Z {exp (—0.8(m) ) ulm I} {uln —m I}

m=—co
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= Z{cxp(-().S(m))}{uln—m]}
m=0

= i{cxp(—().f%(m))}

m=0)

= i{cxp(—().S(m))}

m=0

(1-(=0.8)"")
~(1-(=0.8))

yln]= : {(-0.8)(" wu[n—m]}

m

= i {cxp(-O.S(n— m))u[n—m]}

input:x[n] impulse response: h[n] ouput: y[n]
I T 2T —_ 2p :
e L O = B =
S ) =
= N i
> vEu (3
-1 = -1 >4
0 5 10 15 0 5 10 15 0 § 10 15
n n n
input:x[n] impulse response: h[n] ouput: y[n]
2 i - 2 <
= =5 = |
E 1 ¢ Z 1 £ 1
£ LI < LT < Ll
£ 090 ¥ ogo!!®0000000¢ @i 0fo!
% | ~ME £ |
-1 ' £ ql= : > ql= :
0 5 10 0 5 10 0 5 10
n n n
input:x[n] impulse response: h[n] ouput: y[n]
2 - 2 .
: _ : <
E 1} ’ ¢ S : E
o LI £ LI
S, Opo - s = { L
4 5 4 f 9
0 5 10 0 6 10

n n
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input:x[n] impulse response: h[n] ouput: y[n]
— 2 - ' _— 2 : — :
s, = c
g g £
< =3 =
_'.w _'oo [
| A i o, =
c : =
= = T - ‘ > 4
0 0 5 10 0 5 10
n h
a— input:x[n]
A . j : ; f
E ibostlle, LT, I . 4
i . 21 2372 LY
£ 2 i 1 1 1 i 1
= 0 5 10 15 20 25 30
h
— impulse response: h[n]
=
= A ' ; : : :
g ' : : 5
2 0po T Pee00000000000 ©000000000CQ00C0O0YD
i i f |
c -2 1 1 1 i L 1
r=y 0 5 10 15 20 25 30
n
— ouput: y[n]
% 2 T 0 T T T 13 T
£ e 1, O
E ] JUTE AL VAL
£ 2 i 1 1 i i 1
> 0 5 10 15 20 25 30
n
— input:x[n]
&= f
== i L i i i i
= 0 5 10 15 20 25 30
n

—= impulse response: h[n]

o ' ' ; _

g OQOTTTTTTTTooooooo-éoooo-éooo-oéo-oo-o--o

= > ; i ; ; ; i

= 0 5 10 15 20 25 30
n

= cuput: y[n]

?2,PMHMTTNW T, SN W— —

% %QTT TTeb boTTTob5 boTTfob

b 0 5 10 15 20 25 30
n
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2.2.3 Convolution Integral:
We now attempt to obtain the output of a continuous time/Analog digital system for an arbitrary

input x(t), from the knowledge of the system impulse response h(t), and the properties of the impulse
response of an LTI system.

The output y(t) is given by, using the notation, y(t)=R{x(t)}.
y(t) = R{x(1)}

= R{j xX(7)0(t - t)dr}
= J' X(T)R{o(t—1)}dr

- J'.\-(r)/m— r)dr

= x(t)*h(t)

Methods of evaluating the convolution integral: (Same as Convolution sum)

Given the system impulse response h(t), and the input x(t), the system output y(t), is given by the
convolution integral:

y(t) = ! x(7)h(t—-7)dr

Some of the different methods of evaluating the convolution integral are: Graphical representation,
Mathematical equation, Laplace-transforms, Fourier Transform, Differential equation, Block
diagram representation, and finally by going to the digital domain.

2.3 Differential equation and Difference equation representation:

General form of differential equation is

. o (0 = 3, bty
ag k_}’(f] = bk—kX({J
=0 dt =0 dt

whereakand bkare coefficients, x(.) is input and y(.) is output and order of differential or difference
equation is (M,N).

Example of Differential equation

« Consider the RLC circuit as shown in figure below. Let x(t) be the input voltage source and
y(t) be the output current. Then summing up the voltage drops around the loop gives
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1 r
R0 + Loy + = [ ymar =)

R L
—AMN— Y Y Y

x(1) (i) @ ==

Fig. 2.4: RLC Circuit

2.3.1 Solving differential equation:

A wide variety of continuous time systems are described the linear differential equations:

g K % dk
a——y(f) = by——x(t)
& Cdik = i

e Just as before, in order to solve the equation for y(t), we need the ICs. In this case, the ICs are
given by specifying the value of y and its derivatives 1 through N —1 at t =0—
Note: the ICs are given at t = 0— to allow for impulses and other discontinuities at t =0.
Systems described in this way are
linear time-invariant (LTI): easy to verify by inspection
Causal: the value of the output at time t depends only on the output and the input at times 0 <
t<t
¢ Asinthecaseofdiscrete-timesystem,thesolutiony(t)canbedecomposedintoy(t)=

yn(t)+yp(t) , where homogeneous solution or zero-input response (ZIR), yh(t) satisfies

the equation

e The zero-state response (ZSR) or particular solution y,(¢) satisfies the

equation
N—1 (i) m )
Ao+ Y apy (O =Y buxM=D(y), t =0
i=0 i=0
with ICs y,(07) zy(pl)(O_) = - z‘yﬁ)N_l)(O_) =19

Homogeneous solution (ZIR) for CT

e A standard method for obtaining the homogeneous solution or (ZIR) is

by setting all terms involving the input to zero.

= /)
2;1,;;/5]1 (£)=10; t>0
=0
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and homogeneous solution is of the form
N
{4
Yn(t) = z Cie"
i=1
where r; are the /V roots of the system’s characteristic equation
N
Z a =0
k=0
g Cp yooe Cp are solved using ICs.

Homogeneous solution (ZIR) for DT

e The solution of the homogeneous equation
N
Z aynln—k] =0
k=0
is

N
Yaln) = Z ciry
i=1

where r; are the /V roots of the system’s characteristic equation
N
Z akIN_k =)
k=0
and Cq,...,Cy are solved using ICs.
Example 1 (ZIR)

e Solution of

2
A + 50+ 6(0) = 2x(6) + ox(0)
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is

yu(t) = cre 3 + cpe

e Solution of y[n] —9/16y{n—2] = x[n—1] is yu[n] = ¢1(3/4)"+ c2(—3/4)’
Example 2 (ZIR)

e Consider the first order recursive system described by the difference

equation y{n] — py{n— 1] = x[n], find the homogeneous solution.

e The homogeneous equation (by setting input to zero) is y[n] — py[n—

=N
e The homogeneous solution for N =1 is y,[n] = cyr7.
e 1y is obtained from the characteristics equation ry —p =0, hence r; = p
e The homogeneous solution is y[n] = c1p”
Example 3 (ZIR)
e Consider the RC circuit described by y(¢) + RC%}/({) = x(t)
e The homogeneous equation is y(¢) + RC%_y( =0

e Then the homogeneous solution is

yul(t) = cre™*

where 1y is the root of characteristic equation 1 + RCr; =0

e This gives r} = _PIC

e The homogeneous solution is

ya(t) = c1e®
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e Multiply both the sides of the equation by (1/2)" we get c, =1/(1 -
2p).
e Then the particular solution is

ol = T=557)"

Particular solution (ZSR)

e Particular solution or ZSR represents solution of the differential or dif-

ference equation for the given input.

e To obtain the particular solution or ZSR, one would have to use the

method of integrating factors.
® Vp is not unique.

e Usually it is obtained by assuming an output of the same general form

as the input.

e If x[n] = o, then assume yp,[n] = co”” and find the constant ¢ so that

¥p|n| is the solution of given equation

Examples

Example 1 (ZSR)

e Consider the first order recursive system described by the difference

equation y[n] — py{n—1] = x{n|, find the particular solution when x{n] =

(1/2)".
e Assume a particular solution of the form y,[n] = ¢,(1/2)".

e Put the values of y,[n| and x{n] in the equation then we get c‘,,(%)" -

pcp(3)™ ! = (3)"
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e For p = (1/2) particular solution has the same form as the homoge-

neous solution

e However no coefficient Cp satisfies this condition and we must assume

a particular solution of the form y,[n] = c,n(1/2)".

e Substituting this in the difference equation gives c,n(1—2p)+2pc,=
1

e Using p = (1/2) we find that ¢, = 1.
Example 2 (ZSR)
e Consider the RC circuit described by y(¢) -|—RC%‘y([) =% )

e Assume a particular solution of the form y, () = ¢j cos(mgt) + ¢z sin(wyt).

e Replacing y(¢) by y,(t) and x(¢) by cos(mot) gives
c1 cos(mot) 4 ¢z sin(wot) — RCwg ¢y sin(mgt) + RCwocz cos(wot) = cos(mot)

e The coefficients ¢ and ¢, are obtained by separately equating the co-

efficients of cos(wot) and sin(my¢?), gives

- 1 J . RCO)O
R TN 2= 14 (RCwo)?
e Then the particular solution is
1 RC(DO B
l) = —————C¢C t T /5
Yp(t) T (RCan)? cos(mot) + 1+ (RCag)? sin(mq?)

Complete solution

e Find the form of the homogeneous solution y; from the roots of the

characteristic equation

e Find a particular solution y, by assuming that it is of the same form as

the input, yet is independent of all terms in the homogeneous solution

e Determine the coefficients in the homogeneous solution so that the

complete solution y = yj,+ y, satisfies the initial conditions
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2.3.2 Difference equation representation:

e A wide variety of discrete-time systems are described by linear differ-

ence equations:

N M
An)+ D awyin— K =D, bex[n— k], Tyl 09 B s
k=1 k=0
where the coefficients aj..... ay and bg, ..., bps do not depend on n. In

order to be able to compute the system output, we also need to specify

the initial conditions (ICs) y{—1].y{—2]... y[—/]
e Systems of this kind are

— linear time-invariant (LTI): easy to verify by inspection

— causal: the output at time 1 depends only on past outputs y[n—

e Systems of this kind are also called Auto Regressive Moving-Average

(ARMA) filters. The name comes from considering two special cases.

e auto regressive (AR) filter of order N, AR(N): by = ... = by =0
N
A+ agyin—k =0 =0 1.2 ..
k=1

In the AR case, the system output at time 2 is a linear combination of
N past outputs; need to specify the ICs y[—1],..., Y—N].

e moving-average (MA) filter of order N,AR(N):ap=...=ay=0

M
vl =" brxin— K] =017
k=0

In the MA case, the system output at time 7 is a linear combination of

the current input and M past inputs; no need to specify ICs.
e An ARMA (N, M) filter is a combination of both.

e | et us first rearrange the system equation:

N M
yinl=— > awyln— k]l + D bix[n— k] b 2 i 7 —
k=1 k=0
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e atn=1~0

N

M
N0l = — 3 aw{—K+ D bix[—K]
k=1 k=0

~ ”

depends on ICs depends on input x{0]—x[—M)

e at n=1

N M
A= a1l — K+ D bex[1 — K]
k=1 k=0
After rearranging
N-1 M
All=-aiff0]- Y ap1y{—K+ Y bex{l — &
. K=l ; k=0

depends on ICs depends on inputx{1]...x{1- M)

eatn=2
N M
)”[2] B Z é?kﬂz = /\’] + z ka[Z = k]
k=1 k=0
After rearranging
N-1 M
W) =-apfl]—ayl0] = Y, aksiy-K+ Y, a1 =4
o k=] 3 k=0

depends on ICs depends on input x{2]...X{2—M|

Example of Difference equation

e An example of II order difference equation is
yin|+yn—1]+ %y[n — 2] = x[{n] + 2x[n— 1]

e Memory in discrete system is analogous to energy storage in continu-

ous system
e Number of initial conditions required to determine output is equal to
maximum memory of the system

Initial Conditions
Initial Conditions summaries all the information about the systems past that is needed to

determine the future outputs.
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e In discrete case, for an N order system the N initial value are

e The initial conditions for N*"-order differential equation are the values

of the first /V derivatives of the output

d d> N—1
D t=0, =) |t=0, —V ) |t=05---——
M) |e=o0, dt‘y( )| e=o0, dtz‘y( )|t=0

Solving difference equation

e Consider an example of difference equation y{n|+ay[n—1]| =x[n], n=
0,1,2... with y]—1] = 0 Then

0] = —ay{—1]+x[0]
Al = —ay{0] +x(1]
= —a(—ay|—1]+x]0]) + x[1]
= a°y[—1]— ax{0]) + x{1]
A2l = —afl]+x2]
= —a(—aty[—1] — ax{0] + A1]) + x2]
= a’y[—1] + a’x[0] — ax[1] + x[2]

and so on

e We get y[n| as a sum of two terms:
An = (=a)™ 1 y[-1]+ZLo(—a)" %], n=0,1,2,...

e First term (—a)”*!y[—1] depends on IC’s but not on input
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e Second term Y_,(—a)” ‘x{i] depends only on the input, but not on the

IC’s

e This is true for any ARMA (auto regressive moving average) system:
the system output at time n is a sum of the AR-only and the MA-only
outputs at time 7.

e Consideran ARMA (N,M) system y[n] = — Zﬁ 1 ayln—1] —|—Zf.‘i o bix[n—
1l n=20,1,2,... with the initial conditions y{—1],..., yl—N].

e Qutput at time n is:
M| = yuln] +ypln]

where yj[n] and yp[n] are homogeneous and particular solutions
e First term depends on IC’s but not on input
e Second term depends only on the input, but not on the IC’s

e Note that yp[n] is the output of the system determined by the ICs only
(setting the input to zero), while y,[n] is the output of the system de-

termined by the input only (setting the ICs to zero).

e yu[n] is often called the zero-input response (ZIR) usually referred as
homogeneous solution of the filter (referring to the fact that it is deter-

mined by the ICs only)

e yp[n| is called the zero-state response (ZSR) usually referred as partic-
ular solution of the filter (referring to the fact that it is determined by

the input only, with the ICs set to zero).
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Fig. 2.5: Step response of a system

o Consider the output decomposition y{n| = yy[n] + yp[n| of an ARMA

(N.M) filter
N M
Mn) = - Zalv[n~ il + Zb,,\{n— 1  n=01;2:
=1 =0

with the ICs y{—1]..... {—N].

e The output of an ARMA filter at time 1 is the sum of the ZIR and the
ZSR at time n.

Example of difference equation

e example: A system is described by yin] — 1.143y{n— 1] +0.4128y{n —
2] = 0.0675x{n] 4+ 0.1349x{n— 1] + 0.675x{n - 2]

o Rewrite the equation as y{n] = 1.143y{n— 1] - 0.4128y{n—2] +0.0675x{n| + 0.1349x[{n— 1] +0.675x{n - 2]
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2.4 Block Diagram representation:

A block diagram is an interconnection of elementary operations that

act on the input signal

e This method is more detailed representation of the system than impulse

response or differential/difference equation representations

e The impulse response and differential/difference equation descriptions
represent only the input-output behavior of a system, block diagram

representation describes how the operations are ordered

e Each block diagram representation describes a different set of internal

computations used to determine the system output
e Block diagram consists of three elementary operations on the signals:

— Scalar multiplication: y(¢) = cx(¢) or y{n] = x[n], where c is a

scalar

— Addition: y(t) = x(t) + w(t) or y[n] = x[n] + w{n].
e Block diagram consists of three elementary operations on the signals:

— Integration for continuous time LTI system: y(z) = [*_ x(t)dt

Time shift for discrete time LTI system: y[n] = x[n— 1]

e Scalar multiplication: y(¢) = cx(¢) or y[n] = x[n], where c is a scalar

x(r) c ¥(1) = cx(t)

x[n] = yvin] =cx[n]

Scalar Multiplication

x(1) (1) = x(1) + w(r)
x[n]| vin]=x[n]+ w[nj
wi(r) 1

wln|

Addition
e Addition: y(¢) = x(t) + w(¢) or yln| = x[n] + w{n]

e Integration for continuous time LTI system: y(¢) = [*_x(t)dt

Time shift for discrete time LTI system: y[n] = x{n— 1]
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Fig. 2.6: Time shift and Integration symbol

r—————————————————l
|
| by | win]
x[n] =—— —p § —t > ¥ > v(n|
' I A ! A
| I
| |
| S | S
| I
I b : U
I ! | .
| x[n-1] T | b y[n -1}
[ b A
I I
| |
| s | s
| |
: x[n -2] > : - yln -2]
i et I
Fig. 2.7: Direct form-1 representation
Example 1
e Consider the system described by the block diagram as in Figure 1.10
e Consider the part within the dashed box
e The input x[n| is time shifted by 1 to get x[n— 1] and again time shifted
by one to get x[n— 2]. The scalar multiplications are carried out and
x[n] E E vn]
} . . ‘
5 y 5
} e
3 L
L2 :
5
3 |
Fig. 2.8: Direct form-I representation of Example 1
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they are added to get w{n| and is given by
win] = box[n] + byx{n— 1] + bax{n— 2].

e Write y[n] in terms of w{n] as input y{n] = win| — ayy{n— 1] — azy{n— 2]

e Put the value of w{n] and we get y[n] = —ay[n— 1| — azy[n— 2]+ box{n)
+ byx[n— 1] + byx{n— 2]
and y[n]| +ayyin— 1]+ azyn—2] = box(n]) + byx{n— 1]+ bax{n— 2]

e The block diagram represents an LTI system

Example 2

e Consider the system described by the block diagram and its difference
equation is y{n] + (1/2)y[n— 1] — (1/3)y[n— 3] = x{n] + 2x[n— 2]

Example 3

e Consider the system described by the block diagram and its difference
equation is Mn] + (1/2)y[n— 1]+ (1/4)y{n— 2] = x{n— 1]
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e Block diagram representation is not unique, direct form II structure of

Example 1

e We can change the order without changing the input output behavior
Let the output of a new system be f[n]| and given input x[n] are related

by
fln) = —ay fln— 1] — az f[n— 2] + x{n]

The signal f[n] acts as an input to the second system and output of

second system is
y[n] = bo f[n] + by fln— 1] + by f[n— 2].

The block diagram representation of an LTI system is not unique

Continuous time

e Rewrite the differential equation

¥ el = S
ar——y(t) = D> br—=x(t)
— dtk = dtk

as an integral equation. Let WO (r) = v(t) be an arbitrary signal, and
set

t
A (4) = / A-D(rygr, n=1,23,...
where v (¢) is the n-fold integral of v(¢) with respect to time

e Rewrite in terms of an initial condition on the integrator as

A7 (¢) =/Otv("~1)(r)dr+v<")(0), n=1,2.3,...

e If we assume zero ICs, then differentiation and integration are inverse

operations, ie.

d

EW’)([) =V U(), t>0 and n=1,2,3,...

e Thus, if N> M and integrate NV times, we get the integral description

of the system

> k=0Na N0 () =Y k= 0MpxdVN=H(¢)

e For second order system with ag = 1, the differential equation can be
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Fig. 2.9: Direct form-I representation

Where
t) = —ap V() — agpt)(t) + bax(e) + a1 XV (6) + box®) (r)

f(r) b,

X(1) m—l ¥
A

=y b,
25~ - > >
f(.l)(”

J

—ag 1 by
< >
j‘l p. l( t )

Fig. 2.10: Direct form-11 representation
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2.5 Outcomes:

1. Knowledge on the impulse response of a LTI system
2. Knowledge on representing continuous and discrete time system by differential and difference
equations

3. Knowledge on block diagram representation of continuous and discrete time systems.

2.6 Further reading

1. http://mathworld.wolfram.com/Convolution.html

2. http://colah.github.io/posts/2014-07-Understanding-Convolutions/

3. https://www.khanacademy.org/math/differential-equations/laplace-transform/convolution-
integral/v/introduction-to-the-convolution

4. http://fivedots.coe.psu.ac.th/Software.coe/240-381/slide/DSPCh6.pdf

5. https://www.youtube.com/watch?v=YnV4DIBzvls
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