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2. Why study the Theory of Computation? 
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5. A Finite State Machines (FSM) 

5.1. Deterministic FSM 

5.2. Nondeterministic FSMs 

5.3. Simulators for FSMs 

5.4. Minimizing FSMs 

6. The Language Processors 

7. Structure of Compiler 

1. Introduction 

The term "Automata" is derived from the Greek word "αὐτόµατα" which means "self-acting". An 

automaton (Automata in plural) is an abstract self-propelled computing device which follows a 

predetermined sequence of operations automatically. 

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State 
Machine (FSM). 

2. Why to study Theory of Computation? 

Theory of computation is mainly concerned with the study of how problems can be solved using 

algorithms. It is the study of mathematical properties both of problems and of algorithms for solving 

problems that depend on neither the details of today's technology nor the programming language. 

It is still useful in two key ways: 

 It provides a set of abstract structures that are useful for solving certain classes of 

problems. These abstract structures can he implemented on whatever 

hardware/software platform is available 

 It defines provable limits to what can be computed regardless of processor speed or 

memory size. An understanding of these limits helps us to focus our design effort in 

areas in which it can pay off, rather than on the computing equivalent of the search for 

a perpetual motion machine. 

The goal is to discover fundamental properties of the problems like: 

 Is there any computational solution to the problem? 1f not. is there a restricted but 

useful variation of the problem for which a solution does exist? 

 If a solution exists, can it be implemented using some fixed amount of memory? 

 If a solution exists. how efficient is it? More specifically. how do its time and space 

requirements grow as the size of the problem grows? 

 Are there groups of problems that are equivalent in the sense that if there is an efficient 
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solution to one member of the group there is an efficient solution to all the others? 
 

Applications of theory of computation: 
 

 Development of Machine Languages: Enables both machine-machine and person- 

machine communication. Without them, none of today's applications of computing 

could exist. Example: Network communication protocols, HTML etc. 

 Development of modern programming languages: Both the design and the 

implementation of modern programming languages rely heavily on the theory of 

context-free languages. Context- free grammars are used to document the languages 

syntax and they form the basis for the parsing techniques that all compilers use. 

 Natural language processing: It is a field of computer science, artificial intelligence, 

and computational linguistics concerned with the interactions between computers and 

human (natural) languages. 

 Automated hardware systems: Systems as diverse as parity checkers, vending 

machines, communication protocols, and building security devices can be 

straightforwardly described as finite state machines, which is a part of theory of 

computation. 

 Video Games: Many interactive video games are use large nondeterministic finite state 

machines. 

 Security is perhaps the most important property of many computer systems. The 

undecidability results of computation show that there cannot exist a general-purpose 

method for automatically verifying arbitrary security properties of programs. 

 Artificial intelligence: Artificial intelligence programs solve problems in task domains 

ranging from medical diagnosis to factory scheduling. Various logical frameworks have 

been proposed for representing and reasoning with the knowledge that such programs 

exploit. 

 Graph Algorithms: Many natural structures, including ones as different as organic 

molecules and computer networks can be modeled as graphs. The theory of complexity 

tells us that, is there exist efficient algorithms for answering some important questions 

about graphs. Some questions are "hard", in the sense that no efficient algorithm for 

them is known nor is one likely to be developed. 
 

 

3. Strings 

Alphabet 

Definition: An alphabet is any finite set of symbols denoted by Σ (Sometimes also 

called as characters or symbols). 

Example: Σ = {a, b, c, d} is an alphabet set where ‘a’, ‘b’, ‘c’, and ‘d’ are symbols. 

 
 

String 

Definition: A string is a finite sequence of symbols taken from Σ. 
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Example: ‘cabcad’ is a valid string on the alphabet set Σ = {a, b, c, d} 
 

3.1. Functions on Strings 

Length of a String 

Definition: It is the number of symbols present in a string. (Denoted by |.|). 

Examples: If s =‘cabcad’, | s |= 6; Also |11001101| = 7 

If | s |= 0, it is called an empty string, denoted by ε. |ε| = 0 

Concatenation of strings: The concatenation of two strings s and t, written s||t or simply st, 

is the string formed by appending t to s. For example, if x = good and y = bye, then xy = 

goodbye. So |xy| = |x| + |y|. 

The empty string, e, is the identity for concatenation of strings. (xe = ex = x). 

Concatenation, as a function defined on strings is associative. (st)w = s (tw). 

String Replication 

For each string w and each natural number i, the string wi is defined as: Example: 

a3 = aaa, (bye)2 = byebye, a0b3 = bbb 

String Reversal: For each string w, the reverse of w, written as wR, is defined as: 
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3.2. Relations on strings 

Substring: A string s is a substring of a string of t iff s occurs contiguously as part of t. 

For example: aaa is a substring of aaabbbaaa, aaaaaa is not a substring of aaabbbaaa 
 

Proper Substring: A string r is a proper substring of a string t, iff t is a substring of t and s ≠ 

t. Every string is a substring (although not a proper substring) of itself. The empty string. e. is a substring 

of every string. 

Prefix: A string s is a prefix of t, iff ∃x ∈ ∑∗(t = sx). A string s is a proper prefix of a string t iff s is a 

prefix of t and s≠t. Every string is a prefix (although not a proper prefix) of itself. The empty string ε, is a 
prefix of every string. For example. the prefixes of abba are: ε, a, ab, abb, abba. 

Suffix: A string s is a suffix of t, iff ∃x ∈ ∑∗(t = xs). A string s is a proper suffix of a string t iff s is a 

suffix of t and s≠t. Every string is a suffix (although not a proper suffix) of itself. The empty string ε, is a 
suffix of every string. For example. the prefixes of abba are: ε, a, ba, bba, abba. 

 

4. Languages 

A language is a (finite or infinite) set of strings over a finite alphabet ∑. When we are talking about 

more than one language, we will use the notation ∑L, to mean the alphabet from which the strings in 

the language L are formed. 

Let ∑ = {a, b}. ∑* = {ε, a, b, aa, ab , ba, bb, aaa, aab }. 

Some examples of languages over ∑ are: 

Φ, {ε}, {a, b}, {ε, a, aa, aaa, aaaa, aaaaa}, {ε, a, aa, aaa, aaaa, aaaaa, ................... } 

1.1. Techniques for Defining Languages 

There are many ways. Since languages are sets. we can define them using any of the set- defining 

techniques 

Ex-1: All a's Precede All b's, 
L = {w ϵ {a,b}*: an a's precede all b's in w}. The strings ε, a, aa, aabbb, and bb are in L . The strings aba, 

ba, and abc are not in L. 

Ex-2: Strings that end in ‘a’ 
L = {x : ∃yϵ {a, b}*, (x = ya)}. The strings a, aa, aaa, bbaa and ba are in L. The strings ε, bab, and bca are 

not in L. L consists of all strings that can be formed by taking some string in {a, b}* and concatenating a 

single a onto the end of it. 

Ex-3: Empty language 

L = { } = Φ, the language that contains no strings. Note: L = { ε } the language that contains a single 

string, ε. Note that L is different from Φ. 

Ex-4: Strings of all ‘a’ s containing zero or more ‘a’s 
Let L = { an : n ≥ 0}. L = (ε, a, aa, aaa, aaaa, aaaaa,................ ) 
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Ex-5: We define the following languages in terms of the prefix relation on strings: L1 = 

{wϵ{a, b}* : no prefix of w contains b}= { e , a, aa, aaa, aaaa, aaaaa, aaaaaa, } . 

L2 ={wϵ {a, b}*: no prefix of w starts with b}={w ϵ{a,b}*: the first character of w is a }U{ε}. L3= {wϵ 
{a, b}*; every prefix of w starts with b} =Φ. L3 is equal to Φ because ε is a prefix of every string. Since ε 
does not start with b, no strings meet L3 's requirement. 

 
Languages are sets. So, a computational definition of a language can be given in two ways; 

• a language generator, which enumerates (lists) the elements of the language, or 

• a language recognizer, which decides whether or not a candidate string is in the 

language and returns True if it is and False if it isn't. 

For example, the logical definition. L = {x: ∃y ϵ{a, b}* (x = ya)} can be turned into either a language 

generator (enumerator) or a language recognizer. 

In some cases, when considering an enumerator for a language, we may care about the order in which the 

elements of L are generated. If there exists n total order D of the elements of ∑L, then we can use D to 

define on L a total order called lexicographic order (written <L.): 
• Shorter strings precede longer ones: ∀x ( ∀y (( |x| < |y|)  (x < L y))) and 

• Of strings that are the same length sort them in dictionary order using D. 

Let L= {w ϵ {a, b}*; all a's precede all b's}. The lexicographic enumeration of Lis: ε, a. b. 

aa. ab. bb. aaa. aab. abb. bbb. aaaa, aaab. aabb. abbb. bbbb. aaaaa .... 

 

1.2. Cardinality of a Language 

 Cardinality refers to the number of strings in the language.
 The smallest language over any alphabet is ϕ, whose cardinality is 0.
 The largest language over any alphabet ∑ is ∑*. Suppose that ∑ = Φ, then ∑* = {ε} 

and |∑*| = l. In general, |∑*| is infinite.
 
 

Theory of Computation BCG503

Ashwini P, CSE,ATMECE



AUTOMATA THEORY AND COMPILER DESIGN 21CS51 
 

 

 
 

Concatenation 
Let L1 and L2 be two languages defined over some alphabet ∑. Then their concatenation. written 
L1L2 is: 

 
Example: Let: L1 = {cat, dog, mouse, bird}. L2 = { bone, food}. 
L1L2 = { catbone, catfood, dogbane, dogfood, mousebone, mousefood, birdbone, birdfood}. 

 
The language {ε} is the identity for concatenation of languages. So for all languages L, 

L{ε} = {ε}L = L. 
The language Φ is a zero for concatenation of languages. So, for all languages L, LΦ = ΦL = Φ. That Φ is 
a zero follows from the definition of the concatenation of two languages as the set consisting of all strings 

that can he formed by selecting some string ‘s’ from the first language and some string ‘l’ from the second 

language and then concatenating them together. There are no ways to select a string from the empty set. 

 
Concatenation on languages is associative. So, for all languages L1L2 and L3: 

((L1L2)L3 = L1 (L2L3)). 

 
Reverse 

Let L be a language defined over some alphabet ∑. Then the reverse of L , written LR is: LR = {w 

ϵ ∑*: w = xR for some x ϵ L}. 

In other words, LR is the set of strings that can be formed by taking some string in L and reversing 

it 
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Kleene Star 

Definition: The Kleene star denoted by Σ*, is a unary operator on a set of symbols or strings, Σ, that 

gives the infinite set of all possible strings of all possible lengths over Σ including ε. 

Representation: Σ* = Σ0 U Σ1 U Σ2 U……. where Σp is the set of all possible strings of length p. 

Example: If Σ = {a, b}, Σ*= {λ, a, b, aa, ab, ba, bb, ..................... } 
 

Kleene Closure / Plus 

Definition: The set Σ+ is the infinite set of all possible strings of all possible lengths over Σ excluding ε. 
Σ+ = Σ* − {ε} Representation: 

Σ+ = Σ1 U Σ2 U Σ3 U……. 

Example: If Σ = {a, b} , Σ+ ={ a, b, aa, ab, ba, bb, .........................} 

Closure: A set S is closed under the operation @ if for every element x & y in S, x@y is also an element of 

S. 

4.5. A Language Hierarchy 

A Machine-Based Hierarchy of Language Classes are 

shown in the diagram. 

We have four language classes: 

1. Regular languages, which can be 

accepted by some finite state machine. 

2. Context-free languages, which can be 

accepted by some pushdown automaton. 

3. Decidable (or simply D) languages. 

which can decided by some Turing 

machine that always halts. 

4. Semi-decidable (or SD) languages, which can be semi-decided by some Turing 

machine that halts on all strings in the language. 

Each of these classes is a proper subset of the next class, as illustrated in the Figure. 

As we move outward in the language hierarchy, we have access to tools with greater and expressive 

power. We can define AnBnCn as a decidable language but not as a context-free or a regular one. These 

matters because expressiveness generally comes at a price. The price may be: Computational efficiency, 

decidability and clarity. 

• Computational efficiency: Finite state machines run in time that is linear in the length 

of the input string. A general context-free parser based on the idea of a pushdown 

automaton requires time that grows as the cube of the length of the input string. A 

Theory of Computation BCG503

Ashwini P, CSE,ATMECE



AUTOMATA THEORY AND COMPUTABILITY 18CS54 
 

 

Turing machine may require time that grows exponentially (or faster) with the length of the 

input string. 

• Decidability: There exist procedures to answer many useful questions about finite state 

machines. For example, does an FSM accept some particular string? Is an FSM 

minimal? Are two FSMs identical? A subset of those questions can be answered for 

pushdown automata. None of them can be answered for Turing machines. 

• Clarity: There exist tools that enable designers to draw and analyze finite state 

machines. Every regular language can also be described using the regular expression 

pattern language. Every context-free language, in addition to being recognizable by 

some pushdown automaton, can be described with a context-free grammar 

 

5. Finite State Machines (FSM) 

A finite state machines (or FSM) is a computational device whose input is a string and whose 

output is one of two values; Accept and Reject. FSMs are also sometimes called finite state 

automata or FSAs. 

5.1. Deterministic FSM 

 We begin by defining the class of FSMs whose behavior is deterministic.
 These machines, makes exactly one move at each step
 The move is determined by the current state and the next input character.

 

 
Configuration: A Configuration of a DFSM M is an element of K  *. Configuration captures the two 

things that make a difference to M’s future behavior: i) its current state, the input that remains to be read. 

The Initial Configuration of a DFSM M, on input w, is (sM, w) , where sM is start state of M 

The transition function  defines the operation of a DFSM M one step at a time.  is set of all pairs of 

states in M & characters in . (Current State, Current Character)  New State 

Relation ‘yields’: Yields-in-one-step relates configuration, to configuration-1to configuration- 2 iff M can 

move from canfiguration-1, to configuration-2 in one step. Let c be any element of 

 and let w be any element of *, then, 

(q1, cw) ├M (q2, w) iff ((q1, c), q2) 

|-M * is the reflexive, transitive closure of |-M 

Definition: Deterministic Finite State Machine (DFSM) is M: M = (K, , , s, A), where: 

K is a finite set of states 

 is an alphabet 

s  K is the initial state 

A  K is the set of accepting states, and 

 is the transition function from (K  ) to K 
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Complete vs Incomplete FSM 

Complete FSM: A transition is defined for every possible state and every possible character in the alphabet. Note: 

This can cause FSM to be larger than necessary, but ALWAYS processes the entire string 

Incomplete FSM: One which defines a transition for every possible state & every possible character in the alphabet 

which can lead to an accepting state Note: If no transition is defined, the string is Rejected 

Computation: A Computation by M is a finite sequence of configurations C0, C1, …, Cn for some n  0 such that: 

• C0 is an initial configuration, 

• Cn is of the form (q, ), for some state q  KM 
•  indicates empty string, entire string is processed & implies a complete DFSM 

• C0 |-M C1 |-M C2 |-M … |-M Cn. 

However, M Halts when the last character has to be processed or a next transition is not defined 

Acceptance / Rejection 

A DFSM M, Accepts a string w iff (s, w) |-M * (q, ), for some q  AM. A DFSM M, 

Rejects a string w iff (s, w) |-M* (q, ), for some q  AM. 

 

Regular languages 

A language is regular iff it is accepted by some DFSM. Some examples are listed below. 

• {w {a, b}* | every a is immediately followed by b }. 

• {w  {a, b}* | every a region in w is of even length} 

• binary strings with odd parity. 

 
Designing Deterministic Finite State Machines 

Given some language L. how should we go about designing a DFSM to accept L? In general. as in any design task. 

There is no magic bullet. But there are two related things that it is helpful to think about: 

• Imagine any DFSM M that accepts L. As a string w is being read by M, what properties of the part 

of w that has been seen so far are going to have any bearing on the ultimate answer that M needs to 

produce? Those are the properties that M needs to record. 

• If L is infinite but M has a finite number of states, strings must "cluster". In other words, multiple 

different strings will all drive M to the same state. Once they have done that, none of their 

differences matter anymore. If they've driven M to the same state, they share a fate. No matter what 

comes next, either all of them cause M to accept or all of them cause M to reject. 

 
 
 
 
 
 
 
 
 
 
 
 

The language accepted by M, denoted L(M), is the set of all strings accepted by M. 
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MODULE – 2 
 

Regular Expressions and Lexical Analysis 

Structure: 

1. 2.1 Regular Expression 

2. Equivalence of Re and NFA 

3. DFA 

4. Pumping lemma for regular languages 

5. Lexical Analysis 
 
 

1. Regular Expressions 
 
 

• A regular expression is used to specify a language, and it does so precisely. 

 
• Regular expressions are very intuitive. 

• Regular expressions are very useful in a variety of contexts. 

• Given a regular expression, an NFA-ε can be constructed from it automatically. 

• Thus, so can an NFA, a DFA, and a corresponding program, all automatically! 

Definition: 

• Let Σ be an alphabet. The regular expressions over Σ are: 
 

– Ø Represents the empty set { } 
– ε Represents the set {ε} 
– a Represents the set {a}, for any symbol a in Σ 

 

Let r and s be regular expressions that represent the sets R and S, respectively. 

– r+s Represents the set R U S (precedence 3) 
– rs Represents the set RS (precedence 2) 
– r* Represents the set R* (highest precedence) 
– (r) Represents the set R (not an op, provides precedence) 

 

• If r is a regular expression, then L(r) is used to denote the corresponding language. 
 

• Examples: Let Σ = {0, 1} 
 

(0 + 1)* All strings of 0’s and 1’s 

0(0 + 1)* All strings of 0’s and 1’s, beginning with a 0 
(0 + 1)*1 All strings of 0’s and 1’s, ending with a 1 
(0 + 1)*0(0 + 1)*  All strings of 0’s and 1’s containing at least one 0 (0 + 
1)*0(0 + 1)*0(0 + 1)* All strings of 0’s and 1’s containing at least two 0’s (0 + 
1)*01*01*  All strings of 0’s and 1’s containing at least two 0’s (1 + 
01*0)* All strings of 0’s and 1’s containing an even number of 0’s 
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1*(01*01*)* All strings of 0’s and 1’s containing an even number of 0’s 
(1*01*0)*1* All strings of 0’s and 1’s containing an even number of 0’s 

 
 
 
 

 
Identities: 

 
 

Øu = uØ = Ø Multiply by 0 

 
• u + Ø = u 

 

• u + u = u 
 

8. u* = (u*)* 
 

9. u(v+w) = uv+uw 

10. (u+v)w = uw+vw 
 

11. (uv)*u = u(vu)* 
 

12. (u+v)* = (u*+v)* 
 

= u*(u+v)* 
 

= (u+vu*)* 
 

= (u*v*)* 
 

= u*(vu*)* 
 

= (u*v)*u* 

 
 

2. Equivalence of Regular Expressions and NFA-ε 

• Note: Throughout the following, keep in mind that a string is accepted by an NFA-ε if 
there exists a path from the start state to a final state. 

• Lemma 1: Let r be a regular expression. Then there exists an NFA-ε M such that L(M) = 

L(r). Furthermore, M has exactly one final state with no transitions out of it. 

• Proof: (by induction on the number of operators, denoted by OP(r), in r). 
 

• Basis: OP(r) = 0 
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Then r is either Ø, ε, or a, for some symbol a in Σ 
 

• Inductive Hypothesis: Suppose there exists a k  0 such that for any regular expression r 

where 0  OP(r)  k, there exists an NFA-ε such that L(M) = L(r). Furthermore, suppose 

that M has exactly one final state. 

 
• Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where 

k + 1 >= 1. 

Case 1) r = r1 + r2 

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive hypothesis 

there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and L(M2) = L(r2). 

Furthermore, both M1 and M2 have exactly one final state. 

 
 

Case 2) r = r1r2 

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive hypothesis 

there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and L(M2) = L(r2). 

Furthermore, both M1 and M2 have exactly one final state. 

 

 
Case 3) r = r1* 

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis there exists 

an NFA-ε machine M1 such that L(M1) = L(r1). Furthermore, M1 has exactly one final state. 

• Example: 

Problem: Construct FA equivalent to RE, r = 0(0+1)* 

 

Solution: r = r1r2 
r1 = 0 
r2 = (0+1)* 
r2 = r3* 
r3 = 0+1 
r3 = r4 + r5 
r4 = 0 
r5 = 1 

 
 

Transition graph: 
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i,j 

 

3. Definitions Required to Convert a DFA to a Regular Expression 
 

• Let M = (Q, Σ, δ, q1, F) be a DFA with state set Q = {q1, q2, …, qn}, and define: 
Ri,j = { x | x is in Σ* and δ(qi,x) = qj} 
Ri,j is the set of all strings that define a path in M from qi to qj. 

 
• Lemma 2: Let M = (Q, Σ, δ, q1, F) be a DFA. Then there exists a regular expression r 

such that L(M) = L(r). 
if i=j.Case 1) No transitions from qi to qj and i != j r0

i,j = Ø 
Case 2) At least one (m  1) transition from qi to qj and i != j 

r0
i,j = a1 + a2 + a3 + … + am where δ(qi, ap) = qj, 

for all 1  p  m 

 
Case 3) No transitions from qi to qj and i = j r0

i,j = 
ε 

Case 4) At least one (m  1) transition from qi to qj and i = j 
r0

i,j = a1 + a2 + a3 + … + am + ε where δ(qi, ap) = qj 

for all 1  p  m 
 

• Inductive Hypothesis: 
Suppose that Rk-1

i,j can be represented by the regular expression rk-1
i,j for all 1  i,j 

 n, and some k1. 
 

• Inductive Step: 
Consider Rk = Rk-1

i,k (Rk-1
k,k)

*R k-1
k,j U Rk-1

i,j . By the inductive hypothesis there exist regular 
expressions rk-1

i,k , r
k-1

k,k , r
k-1

k,j , and rk-1
i,j generating Rk-1

i,k , R
k-1 k,k , Rk-1

k,j , and Rk-1
i,j , 

respectively. Thus, if we let 
 

rk 
i,j= rk-1k-1(rk,k

*   )k-1r k-1 +i,kr 
k,j i,j 

 
then rk

i,j is a regular expression generating Rk
i,j ,i.e., L(rk

i,j) = Rk
i,j. 

• Finally, if F = {qj1, qj2, …, qjr}, then 
rn

1,j1 + rn
1,j2 + … + rn

1,jr 

is a regular expression generating L(M).• 
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4. Pumping Lemma for Regular Languages 
 

• Pumping Lemma relates the size of string accepted with the number of states in a DFA 
 

• What is the largest string accepted by a DFA with n states? 
 

• Suppose there is no loop? 
Now, if there is a loop, what type of strings are accepted via the loop(s)? 

 
• Lemma: (the pumping lemma) 

 
Let M be a DFA with |Q| = n states. If there exists a string x in L(M), such that |x|  n, then 
there exists a way to write it as x = uvw, where u,v, and w are all in Σ* and: 

 

– 1 |uv|  n 

– |v|  1 

– such that, the strings uviw are also in L(M), for all i  0 

 
• Let: 

– u = a1…as 

– v = as+1…at 

• Since 0  s<t  n and uv = a1…at it follows that: 
– 1  |v| and therefore 1  |uv| 
– |uv|  n and therefore 1  |uv|  n 

 

• In addition, let: 
– w = at+1…am 

 

• It follows that uviw = a1…as(as+1…at)iat+1…am is in L(M), for all i  0. 

In other words, when processing the accepted string x, the loop was traversed once, but 
could have been traversed as many times as desired, and the resulting string would still be 
accepted. 
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4.1 Closure Properties of Regular Languages 
 
 

1. Closure Under Union 
If L and M are regular languages, so is L ⋃ M. 
Proof: Let L and M be the languages of regular expressions R and S, respectively. Then 
R+S is a regular expression whose language is L ⋃ M. 

 
2. Closure Under Concatenation and Kleene Closure 

RS is a regular expression whose language is LM. 
R* is a regular expression whose language is L*. 

 
3. Closure Under Intersection 

If L and M are regular languages, then so is L ⋂ M. 

Proof: Let A and B be DFA’s whose languages are L and M, respectively. 
 

4. Closure Under Difference 
If L and M are regular languages, then so is L – M = strings in L but not M. Proof: 
Let A and B be DFA’s whose languages are L and M, respectively. 

 
5. Closure Under Complementation 

The complement of language L (w.r.t. an alphabet Σ such that Σ* contains L) is Σ* – L. Since 
Σ* is surely regular, the complement of a regular language is always regular. 

 
6. Closure Under Homomorphism 

If L is a regular language, and h is a homomorphism on its alphabet, then 
h(L) = {h(w) | w is in L} is also a regular language. 

 
5. Grammar 

 
 Definition: A grammar G is defined as a 4-tuple, G = (V, T, S, P) 

Where,• V is a finite set of objects called variables, • T is a finite set of objects called terminal symbols, • S ∈ V is a special symbol called start variable, • P is a finite set of productions. 
Assume that V and T are non-empty and disjoint. 

 

 Example:
Consider the grammar G = ({S}, {a, b}, S, P) with P given by S  
aSb, S ε_. 
For instance, we have S ⇒ aSb ⇒ aaSbb ⇒ aabb. It 
is not hard to conjecture that L(G) = {anbn | n ≥ 0}. 
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5.1 Right, Left-Linear Grammar 
 

 Right-linear Grammar: A grammar G = (V, T, S, P) is said to be right-linear if all 
productions are of the form: 
A  xB, 
A  x, 
Where A, B ∈ V and x ∈ T*. 

 
o Example#1: 

S → abS | a is an example of a right-linear grammar. 
 

 Can you figure out what language it generates? 
 L = {w ∈ {a,b}* |w 

Contains alternating a's and b's , begins with an a, and ends with a b} 

⋃ {a} 

 L((ab)*a) 
 
 

 Left-linear Grammar: A grammar G = (V, T, S, P) is said to be left-linear if all 
productions are of the form: 
A  Bx, 
A  x, 
Where A, B ∈ V and x ∈ T*. 

o Example#2: 
 

S → Aab 
A → Aab | aB 
B → a 
is an example of a left-linear grammar. 

 
 Can you figure out what language it generates? 
 L = {w Î {a,b}* | w is aa followed by at least one set of 

alternating ab's} 
 

 L(aaab(ab)*) 
 
 

o Example#3: 

Consider the grammar 

S → A 
A → aB | λ 
B → Ab 
This grammar is NOT regular. 
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 No "mixing and matching" left- and right-recursive productions. 
5.2 Regular Grammar 

 
 A linear grammar is a grammar in which at most one variable can occur on the right side 

of any production without restriction on the position of this variable. 
 

 An example of linear grammar is G = ({S, S1, S2}, {a, b}, S, P) with 
S  S1ab, 
S1  S1ab | S2, 
S2  a. 

 

 A regular grammar is one that is either right-linear or left-liner. 

 

5.3 Testing Equivalence of Regular Languages 
 

 Let L and M be reg langs (each given in some form). 
 

To test if L = M 
 

1. Convert both L and M to DFA's. 
2. Imagine the DFA that is the union of the two DFA's (never mind there are two 
start states) 
3. If TF-algo says that the two start states are distinguishable, then L 6= M, 
otherwise, L = M. 

 
We can “see" that both DFA accept L(ε+(0+1)*0). The result of the TF-algo is Therefore 

the two automata are equivalent. 

5.4 Regular Grammars and NFA's 

• It's not hard to show that regular grammars generate and nfa's accept the same class of 

languages: the regular languages! 

• It's a long proof, where we must show that 

o Any finite automaton has a corresponding left- or right-linear grammar, 
o And any regular grammar has a corresponding nfa. 

• Example: 
 

o We get a feel for this by example. 
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Let S → aA A → abS | bONTEXT FREE-GRAMMAR 

 

 Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P, S) 
 

Where,  
V - A finite set of variables or non-terminals 
T - A finite set of terminals (V and T do not intersect) P
 - A finite set of productions, each of the form A –> α, 

Where A is in V and α is in (V U T)* 
Note: that α may be ε. 

S - A starting non-terminal (S is in V) 
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• Example#1 CFG: 
 

G = ({S}, {0, 1}, P, S) P: 

(1) S –> 0S1 or just simply S –> 0S1 | ε 
(2) S –> ε 

 
 

• Example Derivations: 
 

S => 0S1 (1) 
S => ε (2) 
 => 01 (2) 
S => 0S1 (1) 
 => 00S11 (1) 
 => 000S111 (1) 
 => 000111 (2) 

 
• Note that G “generates” the language {0k1k | k>=0} 

 

 
6. Derivation (or Parse) Tree 

 

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if: 
– Every vertex has a label from V U T U {ε} 
– The label of the root is S 
– If a vertex with label A has children with labels X1, X2,…, Xn, from left to right, 

then 
A –> X1, X2,…, Xn 

must be a production in P 
– If a vertex has label ε, then that vertex is a leaf and the only child of its’ parent 

 
• More Generally, a derivation tree can be defined with any non-terminal as the root. 

 
 

Definition: A derivation is leftmost (rightmost) if at each step in the derivation a production is applied
 to the leftmost (rightmost) non-terminal in the sentential form. 

 
 

 The first derivation above is leftmost, second is rightmost and the third is neither. 
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break; 
cases for the other characters; 

} 
 

A language is any countable set of strings over some fixed alphabet. This definition is very broad. 
Abstract languages like 0, the empty set, or {e}, the set containing only the empty string, are 
languages under this definition. So too are the set of all syntactically well-formed C programs and 
the set of all grammatically correct English sentences, although the latter two languages are difficult 
to specify exactly. 

 
Operations on languages 

 
LUD: Union operation, where L=set of alphabets 

{A..Z,a..z} and D=set of digits {0..9} 
LD: Concatenation 
L4:exponentiation: set of strings with 4 letters L0= 
Li=Li-1L 

L*=all strings ith : Kleene closure of L D+: set of 
all strings of digits of one or more 

 
 L U D is the set of letters and digits — strictly speaking the language with 62 strings of length 

one, each of which strings is either one letter or one digit. 
 LD is the set of strings of length two, each consisting of one letter followed by one digit. 
 L4 is the set of all 4-letter strings. 
 L* is the set of all strings of letters, including e, the empty string. 
 L(L U D)* is the set of all strings of letters and digits beginning with a letter. 
 D+ is the set of all strings of one or more digits. 

 

 Specification of tokens 

1. In theory of compilation regular expressions are used to formalize the specification of tokens 

2. Regular expressions are means for specifying regular languages 

3. Example: 
 

i. Letter_(letter_ | digit)* 

4. Each regular expression is a pattern specifying the form of strings 
 
 

 Regular expressions 

1. Ɛ is a regular expression, L(Ɛ) = {Ɛ} 

2. If a is a symbol in ∑then a is a regular expression, L(a) = {a} 

3. (r) | (s) is a regular expression denoting the language L(r) L(s) 

4. (r)(s) is a regular expression denoting the language L(r)L(s) 
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5. (r)* is a regular expression denoting (L(r))* 
6. (r) is a regular expression denoting L(r) 

 Regular definitions 
1.   d1 -> r1 
2.   d2 -> r2 
3. … 
4. dn -> rn 

5. Example: 

6. letter_ -> A | B | … | Z | a | b | … | Z | _ 

7. digit ->0|1|…|9 

8. id -> letter_ (letter_ | digit)* 

 
Extensions 

⚫ One or more instances: (r)+ 
⚫ Zero of one instances: r? ⚫ Character classes: [abc] 
⚫ Example: ⚫ letter_ -> [A-Za-z_] 

⚫ digit -> [0-9] 
⚫ id -> letter_(letter_|digit)* 

 
 
 

Transition diagrams 

 
These are the flow charts, as an intermediate step in the construction of a lexical analyzer. This 
takes actions when a lexical analyzer is called by the parser to get the next token. We use transition 
diagram to keep track of information about characters that are seen as and when the forward 
pointer scans the input. Lexeme beginning pointer points to the character following the last lexeme 
found. 

 
E=M* C**2eof 

 
Transition diagrams have a collection of nodes or circles, called states. Each state represents 
a condition that could occur during the process of scanning the input looking for a lexeme that matches 
one of several patterns. We may think of at ate as summarizing all we need to know about what 
characters we have seen between the lexemeBegin pointer and the forward pointer. 

 
Edges are directed from one state of the transition diagram to another. Each edge is labeled by 
a symbol or set of symbols. If we are in some state, and the next input symbol is a, we look for 
an edge out of state s labeled by a (and perhaps by other symbols, as well). If we find such an 
edge, we advance the forward pointer arid enter the state of the transition diagram to which that 
edge leads. We shall as assume that our transition diagrams are deterministic, meaning that there 
is never more than one edge out of a given state with a given symbol among its labels. We 
shall 
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MODULE III: 
 
 
 

1. Context Free Grammar 

2. Minimization of Context Free Grammar 
 
 

1. Ambiguity in Context Free Grammar 
 

• Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an x in L(G) 
with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x 
in L(G) with >1 parse trees, or >1 rightmost derivations. 

 
• Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some ambiguous 

and some not. 
 

• Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is 
inherently ambiguous. 

 
 

• Example: Consider the string aaab and the preceding grammar. 

 
• The string has two left-most derivations, and therefore has two distinct parse trees and is 

ambiguous . 
 

1.1 Eliminations of Useless Symbols 
 

• Definition: 
Let G = (V, T, S, P) be a context-free grammar. A variable A  V is said to be useful if and only if 
there is at least one w  L(G) such that 

 

S  xAy  w 
with x, y  (V  T). 

 
In words, a variable is useful if and only if it occurs in at least on derivation. A variable that is not 
useful is called useless. A production is useless if it involves any useless variable 

 
• For a grammar with productions 
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S  aSb |  | A 
A  aA 

 
A is useless variable and the production S  A plays no role since A cannot be eventually 
transformed into a terminal string; while A can appear in a sentential form derived from S, this 
sentential form can never lead to sentence! 

Hence, removing S  A (and A  aA) does not change the language, but does simplify the 
grammar. 

 
• For a grammar with productions 

S  A 
A  aA | 
B  bA 

 
B is useless so is the production B  bA! Observe that, even though a terminal string can be derived 
from B, there is no way to get to B from S, i.e. cannot achieve 

S  xBy. 
 

• Example: 
Eliminate useless symbols and productions from G = (V, T, S, P), where 
V = {S, A, B, C}, T = {a, b} and 
P consists of 

S  aS | A | C 
A  a 
B  aa 
C  aCb 

 
First, note that the variable C cannot lead to any terminal string, we can then remove C and its 
associated productions, we get G1 with V1 = {S, A, B}, T1 = {a} and P1 consisting of 

S  aS | A 
A  a 
B  aa 

 
Next, we identify variables that cannot be reached from the start variable. We can create a 
dependency graph for V1. For a context-free grammar, a dependency graph has its vertices labeled 
with variables with an edge between any two vertices I and J if there is a production of the form 

I  xJy 

 
 
 
 
 

Consequently, the variable B is shown to be useless and can be removed together with its associated 
production. 
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The resulting grammar G’ = (V’, T’, S, P’) is with V’ = {S, A}, T’ = {a} and P’ consisting of 

S  aS | A 
A  a 

 
1.2 Eliminations of -Production 

 

• Definition : 
a) Any production of a context-free grammar of the form 

A  
is called a -production. 

 
b) Any variable A for which the derivation 

A  
is possible is called nullable. 

 

• If a grammar contains some -productions or nullable variables but does not generate the 
language that contains an empty string, the -productions can be removed! 

 
• Example: 

Consider the grammar, G with productions 
S  aS1b 
S1  aS1b | 

L(G) = {anbn | n  1} which is a -free language. The -production can be removed after adding 

new productions obtained by substituting  for S1 on the right hand side. 
 

We get an equivalent G’ with productions 

S  aS1b | ab 
S1  aS1b | ab 

 
• Theorem: 

Let G be any context-free grammar with   L(G). There exists an equivalent grammar 

G’ without -productions. 
 

Proof : 
Find the set VN of all nullable variables of G 
1. For all productions A  , put A in VN 
2. Repeat the following step until no further variables are added to VN: 
For all productions 

B  A1A2…An 

 
where A1, A2, …, An are in VN, put B in VN. 

 
With the resulting VN, P’ can be constructed by looking at all productions in P of the form 

A  x1x2…xm, m  1 
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where each xi  V  T. 

 
 

For each such production of P, we put in P’ the production plus all productions generated by 

replacing nullable variables with  in all possible combinations. However, if all xi are nullable, the 
resulting production A   is not put in P’. 

 
• Example: 

 
For the grammar G with 

S  ABaC 
A  BC 
B  b |  
C  D |  
D  d 

the nullable variables are A, B, and C. 
 

The equivalent grammar G’ without -productions has P’ containing 

S  ABaC | BaC | AaC | ABa | aC | Ba | Aa | a 
A  BC | C | B 
B  b 
C  D 
D  d 

 
1.3 Eliminations of MODULE-Production 

 

• Definition: 
Any production of a context-free grammar of the form 

A  B 
where A, B  V is called a MODULE-production. 

 

• Theorem: 
Let G = (V, T, S, P) be any context-free grammar without -productions. There exists a context-
free grammar G’ = (V’, T’, S, P’) that does not have any MODULE-productions and that is 
equivalent to G. 

 

Proof: 
First of all, Any MODULE-production of the form A  A can be removed without any effect. 
We then need to consider productions of the form A  B where A and B are different 
variables. 

 

Straightforward replacement of B (with x1 = x2 = ) runs into a problem when we have 

A  B 
B  A 

We need to find for each A, all variables B such that 

A  B 
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This can be done via a dependency graph with an edge (I, J) whenever the grammar G 

has a MODULE-production I  J; A  B whenever there is a walk from A to B in the graph. 

 
The new grammar G’ is generated by first putting in P’ all non-MODULE-productions of P. 

Then, for all A and B with A  B, we add to P’ 
A  y1 | y2 | … | yn 

 
where B  y1 | y2 | … | yn is the set of all rules in P’ with B on the left. Not that the rules are taken 
from P’, therefore, none of yi can be a single variable! Consequently, no MODULE- productions 
are created by this step. 

 

• Example: 
Consider a grammar G with 

S  Aa | B 
A  a | bc | B 
B  A | bb 

 

We have S  A, S  B, A  B and 
B  A. 

 
First, for the set of original non-MODULE-productions, we have 

S  Aa 
A  a | bc 
B  bb 

We then add the new rules 

S  a | bc | bb 
A  bb 
B  a | bc 

We finally obtain the equivalent grammar G’ with P’ consisting of 

S  Aa | a | bc | bb 
A  a | bc | bb 
B  bb | a | bc 

Notice that B and its associate production become useless. 

 
 

2 Minimization of Context Free Grammar 
 

• Theorem: 
Let L be a context-free language that does not contain . There exists a context-free grammar that 
generates L and that does not have any useless productions, -productions or MODULE-
productions. 

 

Proof: 
We need to remove the undesirable productions using the following sequence of steps. 

1. Remove -productions 
2. Remove MODULE-productions 
3. Remove useless productions 
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MODULE V: 
 

1. Turing Machines 
2. The Halting Problem 
3. The Universal language 
4. A Church- Turing thesis 
5. Linear Bounded Automata. 

 
1. Turing Machines (TM) 

 
 Generalize the class of CFLs: 

 
• Recursively enumerable languages are also known as type 0 languages. 
• Context-sensitive languages are also known as type 1 languages. 
• Context-free languages are also known as type 2 languages. 
• Regular languages are also known as type 3 languages. 

• TMs model the computing capability of a general purpose computer, which informally can 
be described as: 
– Effective procedure 

• Finitely describable 

• Well defined, discrete, “mechanical” steps 

• Always terminates 

– Computable function 

• A function computable by an effective procedure 

• TMs formalize the above notion. 
 

1.1 Deterministic Turing Machine (DTM) 
 
 

• Two-way, infinite tape, broken into cells, each containing one symbol. 
• Two-way, read/write tape head. 
• Finite control, i.e., a program, containing the position of the read head, current symbol being 

scanned, and the current state. 
• An input string is placed on the tape, padded to the left and right infinitely with blanks, 

read/write head is positioned at the left end of input string. 
• In one move, depending on the current state and the current symbol being scanned, the TM 1) 

changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape head one 

Theory of Computation BCG503

Ashwini P, CSE,ATMECE



AUTOMATA THEORY AND COMPUTABILITY 18CS54 
 

`̀  

cell left or right. 

• Many modifications possible. 
 
 

1.2 Formal Definition of a DTM 

– A DTM is a seven-tuple: 

M = (Q, Σ, Γ, δ, q0, B, F) 

Q A finite set of states 
Γ A finite tape alphabet 

B A distinguished blank symbol, which is in Γ 
Σ A finite input alphabet, which is a subset of Γ– {B} q0

 The initial/starting state, q0 is in Q 
F A set of final/accepting states, which is a subset of Q δ A 
next-move function, which is a mapping from 

Q x Γ –> Q x Γ x {L,R} 
 

Intuitively, δ(q,s) specifies the next state, symbol to be written and the direction of tape head 
movement by M after reading symbol s while in 
state q. 

 

• Example #1: {0n1n | n >= 1} 

0 1 X Y B 
q0 (q1, X, R) - - (q3, Y, R) - 

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) - 

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) - 

q3 - - - (q3, Y, R) (q4, B, R) 

q4 - - - - - 
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– Example #1: {0n1n | n >= 1} 

0 1 X Y B 
q0 (q1, X, R) - - (q3, Y, R) - 
q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) - 
q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) - 
q3 - - - (q3, Y, R) (q4, B, R) 
q4 - - - - - 

 

– The TM basically matches up 0’s and 1’s 

– q1 is the “scan right” state 

– q2 is the “scan left” state 

– q4 is the final state 
 

– Example #2: {w | w is in {0,1}* and w ends with a 0} 

0 
00 
10 

10110 
Not ε 

 
Q = {q0, q1, q2} 
Γ = {0, 1, B} 
Σ = {0, 1} 

F = {q2} 

0 1 B 
q0 (q0, 0, R) (q0, 1, R) (q1, B, L) 
q1 (q2, 0, R) - - 
q2 - - - 

 

– q0 is the “scan right” state 

– q1 is the verify 0 state 
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– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is 
accepted by M iff 

 
q0w |—* α1pα2 

 
Where p is in F and α1 and α2 are in Г* 

 
– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, denoted 

L(M), is the set 

L={w | w is in Σ* and w is accepted by M} 
In contrast to FA and PDAs, if a TM simply passes through a final state then the string is accepted. 

• Given the above definition, no final state of an TM need have any exiting transitions. 
Henceforth, this is our assumption. 

• If x is not in L(M) then M may enter an infinite loop, or halt in a non-final state. 
• Some TMs halt on all inputs, while others may not. In either case the language 

defined by TM is still well defined. 

– Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M 
such that L = L(M). 

 

– If L is r.e. then L = L(M) for some TM M, and 
• If x is in L then M halts in a final (accepting) state. 
• If x is not in L then M may halt in a non-final (non-accepting) state, or loop 
forever. 

 
 

– Definition: Let L be a language. Then L is recursive if there exists a TM M such that L = 
L(M) and M halts on all inputs. 

 

– If L is recursive then L = L(M) for some TM M, and 
• If x is in L then M halts in a final (accepting) state. 
• If x is not in L then M halts a non-final (non-accepting) state. 

 
– The set of all recursive languages is a subset of the set of all recursively enumerable 

languages 
 

– Terminology is easy to confuse: A TM is not recursive or recursively enumerable, 
rather a language is recursive or recursively enumerable. 

 
 

– Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, … of TMs 
such that L = L(Mi). 

 
– Question: Let L be a recursive language, and M0, M1, … a list of all TMs such that L = 

L(Mi), and choose any i>=0. Does Mi always halt? 
 

Answer: Maybe, maybe not, but at least one in the list does. 
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– Question: Let L be a recursive enumerable language, and M0, M1, … a list of all TMs such 
that L = L(Mi), and choose any i>=0. Does Mi always halt? 

 
Answer: Maybe, maybe not. Depending on L, none might halt or some may halt. 

 
– If L is also recursive then L is recursively enumerable. 

 
Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. – r), and M0, M1, 
… a list of all TMs such that L = L(Mi), and choose any i>=0. Does Mi always halt? 

Answer: No! If it did, then L would not be in r.e. – r, it would be recursive. 
 

• Let M be a TM. 

• Question: Is L(M) r.e.? 
Answer: Yes! By definition it is! 

 
• Question: Is L(M) recursive? 

Answer: Don’t know, we don’t have enough information. 
 

• Question: Is L(M) in r.e – r? 
Answer: Don’t know, we don’t have enough information. 

 

• Let M be a TM that halts on all inputs: 

• Question: Is L(M) recursively enumerable? 
Answer: Yes! By definition it is! 

 
• Question: Is L(M) recursive? 

Answer: Yes! By definition it is! 
 

• Question: Is L(M) in r.e – r? 
Answer: No! It can’t be. Since M always halts, L(M) is recursive. 

 

• Let M be a TM. 

• As noted previously, L(M) is recursively enumerable, but may or may not be 
recursive. 

 
• Question: Suppose that L(M) is recursive. Does that mean that M always halts? 

Answer: Not necessarily. However, some TM M’ must exist such that L(M’) = L(M) 
and M’ always halts. 

 
• Question: Suppose that L(M) is in r.e. – r. Does M always halt? 

Answer: No! If it did then L(M) would be recursive and therefore not in r.e. – r. 

 

• Let M be a TM, and suppose that M loops forever on some string x. 
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• Question: Is L(M) recursively enumerable? 
Answer: Yes! By definition it is. 

 
• Question: Is L(M) recursive? 

Answer: Don’t know. Although M doesn’t always halt, some other TM M’ may exist such 

that L(M’) = L(M) and M’ always halts. 

• Question: Is L(M) in r.e. – r? 
Answer: Don’t know. 

 
 

Closure Properties for Recursive and Recursively Enumerable Languages 
 

• TMs Model General Purpose Computers: 
• If a TM can do it, so can a GP computer 
• If a GP computer can do it, then so can a TM 

 
If you want to know if a TM can do X, then some equivalent question are: 

• Can a general purpose computer do X? 
• Can a C/C++/Java/etc. program be written to do X? 

 
For example, is a language L recursive? 

• Can a C/C++/Java/etc. program be written that always halts and accepts L? 
 
 

• TM Block Diagrams: 
• If L is a recursive language, then a TM M that accepts L and always halts can be 

pictorially represented by a “chip” that has one input and two outputs. 
 
 

• If L is a recursively enumerable language, then a TM M that accepts L can be 
pictorially represented by a “chip” that has one output. 

 

• Conceivably, M could be provided with an output for “no,” but this output cannot be 
counted on. Consequently, we simply ignore it. 

 
– Theorem: The recursive languages are closed with respect to complementation, i.e., if L is 

a recursive language, then so is 
 

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as 
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– Note That: 
– M’ accepts iff M does not 

– M’ always halts since M always halts 

From this it follows that the complement of L is recursive. • 
 
 
 

• Theorem: The recursive languages are closed with respect to union, i.e., if L1 and L2 are 
recursive languages, then so is 

 
Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2 always halts. 
Construct TM M’ as follows: 

 

• Note That: 
• L(M’) = L(M1) U L(M2) 

• L(M’) is a subset of L(M1) U L(M2) 
• L(M1) U L(M2) is a subset of L(M’) 

• M’ always halts since M1 and M2 always halt 

It follows from this that L3 = L1 U L2 is recursive. 

 
 

• Theorem: The recursive enumerable languages are closed with respect to union, i.e., if L1 

and L2 are recursively enumerable languages, then so is L3 = L1 U L2 
 

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct M’ as follows: 
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• Note That: 
– L(M’) = L(M1) U L(M2) 

• L(M’) is a subset of L(M1) U L(M2) 
• L(M1) U L(M2) is a subset of L(M’) 

– M’ halts and accepts iff M1 or M2 halts and accepts 

 
It follows from this that is recursively enumerable. 

 
 

 
2. The Halting Problem – Background 

• Definition: A decision problem is a problem having a yes/no answer (that one presumably 
wants to solve with a computer). Typically, there is a list of parameters on which the 
problem is based. 

– Given a list of numbers, is that list sorted? 

– Given a number x, is x even? 

– Given a C program, does that C program contain any syntax errors? 

– Given a TM (or C program), does that TM contain an infinite loop? 

From a practical perspective, many decision problems do not seem all that interesting. However, 
from a theoretical perspective they are for the following two reasons: 

– Decision problems are more convenient/easier to work with when proving 
complexity results. 

– Non-decision counter-parts are typically at least as difficult to solve. 

 

• Notes: 

– The following terms and phrases are analogous: 

Algorithm - A halting TM program 
Decision Problem  - A language 
(un)Decidable - (non)Recursive 
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Statement of the Halting Problem 

• Practical Form: (P1) 
Input: Program P and input I. Question: 
Does P terminate on input I? 

 
• Theoretical Form: (P2) 

Input: Turing machine M with input alphabet Σ and string w in Σ*. 
Question: Does M halt on w? 

 
• A Related Problem We Will Consider First: (P3) 

Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. Question: 
Is w in L(M)? 

 
• Analogy: 

Input: DFA M with input alphabet Σ and string w in Σ*. 
Question: Is w in L(M)? 

 
Is this problem decidable? Yes! 

 

• Over-All Approach: 

• We will show that a language Ld is not recursively enumerable 
• From this it will follow that is not recursive 
• Using this we will show that a language Lu is not recursive 
• From this it will follow that the halting problem is undecidable. 

 
 

3. The Universal Language 

• Define the language Lu as follows: 

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)} 
 
 

• Let x be in {0, 1}*. Then either: 
 

1. x doesn’t have a TM prefix, in which case x is not in Lu 

 
2. x has a TM prefix, i.e., x = <M,w> and either: 

 
a) w is not in L(M), in which case x is not in Lu 

 
b) w is in L(M), in which case x is in Lu 
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• Compare P3 and Lu: 

(P3): 
Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. 

 

• Notes: 
• Lu is P3 expressed as a language 
• Asking if Lu is recursive is the same as asking if P3 is decidable. 
• We will show that Lu is not recursive, and from this it will follow that P3 is un- 

decidable. 
• From this we can further show that the halting problem is un-decidable. 
• Note that Lu is recursive if M is a DFA. 

 
4. Church-Turing Thesis 

 

• There is an effective procedure for solving a problem if and only if there is a TM that 
halts for all inputs and solves the problem. 

 

• There are many other computing models, but all are equivalent to or subsumed by TMs. 
There is no more powerful machine (Technically cannot be proved). 

 
• DFAs and PDAs do not model all effective procedures or computable functions, but only 

a subset. 
 

• If something can be “computed” it can be computed by a Turing machine. 
 

• Note that this is called a Thesis, not a theorem. 
 

• It can’t be proved, because the term “can be computed” is too vague. 
 

• But it is universally accepted as a true statement. 
 

• Given the Church-Turing Thesis: 
 

o What does this say about "computability"? 

o Are there things even a Turing machine can't do? 

o If there are, then there are things that simply can't be "computed." 

 Not with a Turing machine 

Theory of Computation BCG503

Ashwini P, CSE,ATMECE



AUTOMATA THEORY AND COMPUTABILITY 18CS54 
 

 

 Not with your laptop 
 

 Not with a supercomputer 
 

o There ARE things that a Turing machine can't do!!! 

• The Church-Turing Thesis: 
 

o In other words, there is no problem for which we can describe an algorithm that 
can’t be done by a Turing machine. 

 
 

The Universal Turing machine 

• If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any 

Tm on any tape that it is given? 

• Yes. This machine is called the Universal Turing machine. 
 

• How would we build a Universal Turing machine? 
 

o We place an encoding of any Turing machine on the input tape of the Universal 
Tm. 

 

o The tape consists entirely of zeros and ones (and, of course, blanks) 

o Any Tm is represented by zeros and ones, using unary notation for elements and 
zeros as separators. 

 

• Every Tm instruction consists of four parts, each a represented as a series of 1's and 

separated by 0's. 

• Instructions are separated by 00. 
 

• We use unary notation to represent components of an instruction, with 
 

 0 = 1, 
 

 1 = 11, 
 

 2 = 111, 
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 3 = 1111, 
 

 n = 111...111 (n+1 1's). 
 

• We encode qn as n + 1 1's 

• We encode symbol an as n + 1 1's 

• We encode move left as 1, and move right as 11 

1111011101111101110100101101101101100 

q3, a2, q4, a2, L q0, a1, q1, a1, R 
 

• Any Turing machine can be encoded as a unique long string of zeros and ones, 

beginning with a 1. 

• Let Tn be the Turing machine whose encoding is the number n. 
 

 
5. Linear Bounded Automata 

• A Turing machine that has the length of its tape limited to the length of the input string is 

called a linear-bounded automaton (LBA). 

• A linear bounded automaton is a 7-tuple nondeterministic Turing machine M = (Q, S, G, 

d, q0,qaccept, qreject) except that: 

a. There are two extra tape symbols < and >, which are not elements of G. 
 

b. The TM begins in the configuration (q0<x>), with its tape head scanning the 
symbol < in cell 0. The > symbol is in the cell immediately to the right of the input 
string x. 

c. The TM cannot replace < or > with anything else, nor move the tape head left 

of < or right of >. 
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Context-Sensitivity 
 

• Context-sensitive production any production satisfying | |  | 

• Context-sensitive grammar any generative grammar G =  , 

production in  context-sensitive. 

• No empty productions. 

 
 

|. 
 

 such that every 

 
 
 

Context-Sensitive Language 

• Language L context-sensitive if there exists context-sensitive grammar G such that either 
L = L(G) or L = L(G)  { }. 

 

• Example: 
The language L = {anbncn : n  1} is a C.S.L. the grammar is S  

abc/ aAbc, 

Ab  bA, 

AC  Bbcc, 

bB  Bb, 

aB  aa/ aaA 
 

The derivation tree of a3b3c3 is looking to be as following S ⇒ 

aAbc ⇒ abAc 
 ⇒ abBbcc 
 ⇒ aBbbcc ⇒ aaAbbcc 
 ⇒ aabAbcc 
 ⇒ aabbAcc ⇒ aabbBbccc 
 ⇒ aabBbbccc 
 ⇒ aaBbbbccc 
 ⇒ aaabbbccc 
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CSG = LBA 

• A language is accepted by an LBA iff it is generated by a CSG. 
 

• Just like equivalence between CFG and PDA 
 

• Given an x  CSG G, you can intuitively see that and LBA can start with S, and 

nondeterministically choose all derivations from S and see if they are equal to the input 

string x. Because CSL’s are non-contracting, the LBA only needs to generate derivations 

of length  |x|. This is because if it generates a derivation longer than |x|, it will never be 

able to shrink to the size of |x|. 

 
 

Theory of Computation BCG503

Ashwini P, CSE,ATMECE



 

 

 

Theory of Computation BCG503

Ashwini P, CSE,ATMECE


	MODULE I:
	1. Introduction
	2. Why to study Theory of Computation?
	3. Strings
	Alphabet
	String

	3.1. Functions on Strings
	Length of a String
	String Replication

	3.2. Relations on strings
	4. Languages
	1.1. Techniques for Defining Languages
	Ex-1: All a's Precede All b's,
	Ex-4: Strings of all ‘a’ s containing zero or more ‘a’s

	1.2. Cardinality of a Language
	Concatenation
	L{ε} = {ε}L = L.

	Reverse
	Kleene Star
	Kleene Closure / Plus

	4.5. A Language Hierarchy
	5. Finite State Machines (FSM)
	5.1. Deterministic FSM
	Complete vs Incomplete FSM
	Acceptance / Rejection
	Regular languages
	Designing Deterministic Finite State Machines
	2. Equivalence of Re and NFA
	4. Pumping lemma for regular languages
	5. Lexical Analysis
	Definition:
	Identities:
	2. Equivalence of Regular Expressions and NFA-ε
	Case 1) r = r1 + r2
	Case 2) r = r1r2
	Case 3) r = r1*

	• Example:
	3. Definitions Required to Convert a DFA to a Regular Expression
	• Inductive Hypothesis:
	• Inductive Step:
	4. Pumping Lemma for Regular Languages
	4.1 Closure Properties of Regular Languages
	5. Grammar
	 Example:
	5.1 Right, Left-Linear Grammar
	o Example#1:
	o Example#2:
	o Example#3:
	5.2 Regular Grammar
	5.3 Testing Equivalence of Regular Languages
	5.4 Regular Grammars and NFA's
	• Example: (1)
	• Example#1 CFG:
	• Example Derivations:
	6. Derivation (or Parse) Tree


	Lexical Analysis
	 Specification of tokens
	 Regular expressions
	 Regular definitions
	Extensions
	Transition diagrams
	MODULE III:
	2. Minimization of Context Free Grammar
	1. Ambiguity in Context Free Grammar
	1.1 Eliminations of Useless Symbols
	• Example:
	1.2 Eliminations of -Production
	• Example: (1)
	• Theorem:
	Proof :
	• Example: (2)
	1.3 Eliminations of MODULE-Production
	• Theorem: (1)
	Proof:
	• Example: (3)
	2 Minimization of Context Free Grammar
	Proof: (1)
	MODULE V:
	2. The Halting Problem
	4. A Church- Turing thesis
	1. Turing Machines (TM)
	1.1 Deterministic Turing Machine (DTM)
	1.2 Formal Definition of a DTM
	• If x is not in L(M) then M may enter an infinite loop, or halt in a non-final state.
	• Let M be a TM.
	• Let M be a TM that halts on all inputs:
	• Let M be a TM. (1)
	• Let M be a TM, and suppose that M loops forever on some string x.
	Closure Properties for Recursive and Recursively Enumerable Languages
	• TM Block Diagrams:
	– Note That:
	• Note That:
	• Note That: (1)
	2. The Halting Problem – Background
	• Notes:
	Statement of the Halting Problem
	• Theoretical Form: (P2)
	• A Related Problem We Will Consider First: (P3)
	• Analogy:
	• Over-All Approach:
	3. The Universal Language
	• Compare P3 and Lu:
	• Notes: (1)
	4. Church-Turing Thesis
	• The Church-Turing Thesis:

	The Universal Turing machine
	5. Linear Bounded Automata
	Context-Sensitivity
	Context-Sensitive Language
	• Example: (4)
	CSG = LBA



