
Department of Mechanical Engineering

Mr. Rohith S

Assistant professor, 

Dept. of Mechanical Engineering,

ATMECE, Mysuru

Department of Mechanical Engineering 1

Module - 5

System Compensation & State Variable 

Characteristics of Linear Systems
CONTROL 

ENGINEERING  

21ME72



Department of Mechanical Engineering

OBJECTIVES:
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▪ To study different system compensators and variable characteristics of linear systems
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Compensator:
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The additional component or device that compensates the performance deficiency is called as 

compensator

There are four types of system compensators,

1. Series or cascade compensator

2. Parallel or feedback compensator

3. Input compensator

4. Output compensator
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Series compensator :

Parallel compensator :
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Input compensator :

Output compensator :
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Introduction to state concepts :

State variable models are basically time domain models which involves the analysis and 

study of linear and nonlinear, time invariant or time varying multi input multi output 

Control system.

Advantages of state variables analysis are

▪ It can be applied to non linear system

▪ It can be applied to time invariant system

▪ It can be applied to multiple input multiple output system

▪ It gives the idea about the internal state of the system.
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𝑑

𝑑𝑡
𝑋1 𝑡 = 𝑋1 = 𝑓1(𝑋1 ,𝑋2 . .𝑋𝑛 ,𝑈1 ,𝑈2 . .𝑈𝑚 )

𝑑

𝑑𝑡
𝑋2 𝑡 = 𝑋2 = 𝑓2(𝑋1 ,𝑋2 . .𝑋𝑛 ,𝑈1 ,𝑈2 . .𝑈𝑚 )

𝑑

𝑑𝑡
𝑋𝑛 𝑡 = 𝑋𝑛 = 𝑓𝑛 (𝑋1 ,𝑋2 . .𝑋𝑛 ,𝑈1 ,𝑈2 . .𝑈𝑚 )

On integrating above equation

𝑋𝑖 𝑡 = 𝑋𝑖 𝑡0
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+ ∫ 𝑓𝑛 (𝑋1 ,𝑋2 . .𝑋𝑛 ,𝑈1 ,𝑈2 . .𝑈𝑚 ) 𝑑𝑡

𝑡0
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𝑋(𝑡) = 𝑓 (𝑋 𝑡 ,𝑈 𝑡 )

Thus , 'n' differential equation can be represented in vector form as

𝑋 𝑡 =

𝑋1(𝑡)
𝑋2(𝑡)

.

.
𝑋𝑛(𝑡)

𝑈 𝑡 =

𝑈1(𝑡)
𝑈2(𝑡)

.

.
𝑈𝑚(𝑡)

For, Time varying systems

𝑋(𝑡) = 𝑓 (𝑋 𝑡 ,𝑈 𝑡 , 𝑡)

The output vector Y(t) can be generally expressed in terms of state vector X(t), as follows

𝑌(𝑡) = 𝑔 (𝑋 𝑡 ,𝑈 𝑡 )
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9

Matrix representation of state equations

Thus the derivative of each state variable can be expressed in terms of linear combination of system states 

and input as
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The above equation can be reduced in matrix from known as “State equation”

𝑿 𝒕 = 𝑨𝑿 𝒕 + 𝑩𝑼(𝒕) ----Eq. 3
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Ẋ(t) = Derivative of state vector of order (n x 1)

X(t) = State vector matrix of order (n x 1)

U(t) = Input vector matrix of order (m x 1)

A = System matrix or evolution matrix of order (n x n) 

B = Input matrix or control matrix of order (n x m)

Where



Department of Mechanical Engineering

Similarly the output variables can be expressed as linear combinations of the state variables 

and input variables at time „t‟ can be expressed as

In matrix form
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𝒀 𝒕 = 𝑪𝑿 𝒕 +𝑫𝑼(𝒕) ----Eq. 6

Where,

Y (t)= Output vector matrix of order (p×1) 

C = Output matrix of order (p×n)

D = Transmission matrix of order (p×n)
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Example 1: Obtain the state model for the equation 𝒚 + 𝟑𝒚 + 𝟐𝒚 + 𝒚 = 𝒓(𝒕)

Solution.

Choose the state variation

𝑋1 = 𝑦

𝑋2 = 𝑦

𝑋3 = 𝑦

Differentiating above equation

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝒀 𝒕 = 𝑪𝑿 𝒕 +𝑫𝑼(𝒕)

= 𝑋2

= 𝑋3

𝑋1 = 𝑦

𝑋2 = 𝑦

𝑋3 = 𝑦
𝒚 = −𝟑𝒚 − 𝟐𝒚 − 𝒚 + 𝒓 𝒕
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Differentiating above equation

= 𝑋2

= 𝑋3

𝑋1 = 𝑦

𝑋2 = 𝑦

𝑋3 = 𝑦
𝒚 = −𝟑𝒚 − 𝟐𝒚 − 𝒚 + 𝒓 𝒕

𝑋3 = −𝟑𝑋3 − 𝟐𝑋2 − 𝑋1 + 𝒓 𝒕

Therefore the above equation can be written in the matrix form

𝑋1

𝑋2

𝑋3

=
0 1 0
0 0 1

−1 −2 −3

0𝑋1

𝑋2 + 0
𝑋3 1

𝒓 𝒕

𝑿 𝒕 = 𝑨𝑿 𝒕

14Department of Mechanical Engineering

+𝑩𝑼(𝒕)
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𝑋1

𝑋2

𝑋3

=
0 1 0
0 0 1

−1 −2 −3

0𝑋1

𝑋2 + 0
𝑋3 1

𝒓 𝒕

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝐴 =
0 1 0
0 0 1

−1 −2 −3

B =
0
0
1
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where,
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Output equation can written as

𝒀 𝒕 = 𝑪𝑿 𝒕 +𝑫𝑼(𝒕)
𝑋1 = 𝑦

𝑋1

𝑋2

𝑋3

𝑦 = 1 0 0

𝒀 𝒕 = 𝑪𝑿 𝒕

𝑪 = 1 0 0
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State controllability and observability
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1. Is it possible to transfer the system under consideration from any initial state to desired

state by the application of suitable control force with the specified time?

2. Is it possible to determine the initial stats of the system if the output vector is known for a

finite length of time.

The system is said to be completely controllable if it is possible to transfer the system 

state from any initial state x(t0) to any other desired state x(tf) in a specified finite  

time interval (t0 ≤ t ≤ tp) by unconstrained control vector U(T).
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The state controllability tests can be performed by two methods

1. Kalman’s test for controllability

2. Gilbert’s test for controllability
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Kalman test for state controllability

If the nth order multiple input linear time invariant system represented by state equation as

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

Then, 𝑄𝐶 = 𝐵 𝐴𝐵
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𝐴2𝐵 𝐴3𝐵 . . . . 𝐴𝑛−1𝐵

The system is said to be controllable if the rank of the controllability matrix (Qc) is „n‟then the  

determined of order (n x n) of any sub matrix of Qc has non zero value.

If the rank of the controllability matrix (Qc) is less than (n), then the system is not completely 

state controllable.



Department of Mechanical Engineering

Example 1 : From the controllability of the system by Kalman's test of order 2 which is

given by

𝑋 𝑡 =
1 1
0 −1

𝑋1

𝑋2 0
+ 1 𝑈(𝑡)

Solution:

Comparing with standard equation 𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝐴 =
1 1
0 −1

𝐵 =
1
0

Controllability / composite matrix 𝑄𝐶 = 𝐵 𝐴𝐵

𝐴𝐵 =
1 1
0 −1

×
1
0

=
1
0
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𝑄𝐶 =

𝐵 =
1
0

𝐴𝐵 =
1
0

1 1
0 0

= 0

𝑄𝐶 =
1 1
0 0

= 0

Since the 𝑄𝐶
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= 0 ≠ 𝑛 then the system is not completely controllable.



Department of Mechanical Engineering

Gilbert’s test for state controllability

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝒀 𝒕 = 𝑪𝑿 𝒕 + 𝑫𝑼(𝒕)

Case 1 :

If matrix A is an diagonal canonical form, then the transformation matrix is the identity matrix (T = I)

𝐵𝑡 = 𝑇−1𝐵

If no elements of the matrix are zero, the system is completely state controllable.
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Case 2 : If matrix A is a not in diagonal canonical form following steps are followed.

Step 1 : Find Eigen value of matrix A

λ𝐼 − 𝐴 = 0

Step 2 : Find the transformation matrix

Develop Vander monde matrix of A which will be used as transformation matrix.

Step 3 : Find 𝐵𝑡 = 𝑇−1𝐵

If no elements of the matrix are zero, the system is completely state controllable.
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Example 1 : Determine the controllability of a system for the given state equation by

Gilbert's test. 𝑋1

𝑋2

𝑋3

=
0 1 0
0 0 1

−6 −11 −6

𝑋1

𝑋2

𝑋3

0

1
+ 0 𝑈

Solution:

Considering with standard equation 𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝐴 =
0 1 0
0 0 1

−6 −11 −6
𝐵 =

0
0
1
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Since matrixA is not canonical, find Eigen values of A.
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λ𝐼 − 𝐴 = 0

1 0
λ 0 1

0 0

0
0
1

− = 0

λ𝐼 − 𝐴 =

0 1 0
0 0 1

−6 −11 −6

λ −1 0
0 λ −1
6 11 λ + 6

= 0

λ λ2 + 6λ − (−11) − 1 −6 + 0 + 0 = 0

𝝀𝟑 + 𝟔𝝀𝟐 + 𝟏𝟏𝝀+ 𝟔 = 𝟎

Roots of above equation
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𝝀1 = −1 𝝀2 = −2 𝝀3 = −3
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Find Vander monde matrix

𝝀1 = −1 𝝀2 = −2 𝝀3 = −3

𝑇 =
1 1 1

−1 −2 −3
1 4 9

Find inverse of Vander monde matrix (T)

𝑇−1 =
𝑎𝑑𝑗(𝑇) Cofactor matrix 𝐶(𝑇) =

𝑇

−6 6 −2
−5 8 −3
−1 2 −1

Adjugate matrix 𝑎𝑑𝑗 𝑇 = 𝐶𝑇 =
−6 −5 −1
6 8 2

−2 −3 −1
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1 1 1 −6 −5 −1
𝑇 = −1 −2 −3 = −2 𝑎𝑑𝑗 𝑇 = 6 8 2

1 4 9 −2 −3 −1

𝑇−1 =
𝑎𝑑𝑗(𝑇)

𝑇
=

1

−2 −2

−6 −5 −1
6 8 2

−3 −1

𝑇−1 =

5 1
3

2 2
−3 −4 −1

3 1
1

2 2
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𝐵𝑡 = 𝑇−1𝐵

𝑇−1 =

5 1
3

2 2
−3 −4 −1

3 1
1

2 2

𝐵 =
0
0
1

𝐵𝑡 =

3 5 1
02 2

−3 −4 −1 0

1 3 1 1
2 2

𝐵𝑡 =

1

2

−1
1

2

Since no elements of the Matrix 𝑩𝒕 are zero, the 

system is completely state controllable.
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State Observability

The system is said to be completely observable if every X(t0) can be completely observable, 

if  every state X(t0) can be completely identified by measurement of the Output Y(t) over a  

finite time interval (t ≥ to) assuming that the control signal U(T) is also available.

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝒀 𝒕 = 𝑪𝑿 𝒕 + 𝑫𝑼(𝒕)

The state observability tests can be performed by two methods

1. Kalman's test for observability

2. Gilbert's test for observability
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Kalman test for state observability

If the nth order multiple input linear time invariant system represented by state equation as

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

Then, 𝑄0 = 𝐶𝑇 𝐴𝑇𝐶𝑇 . . . . 𝐴𝑇 𝑛−1𝐶𝑇

The system is said to be observable if the order of the rank of the observability matrix (Q0) is

„n‟and value of the determinant, 𝑄0 ≠ 0 .
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Example 1 : Find the observability of the system by Kalman's for the state model.

𝑋 𝑡 =
1 1

−2 −1

𝑋1

𝑋2 1
+ 0 𝑈(𝑡)

Solution:

Comparing with standard equation

𝐴 =

𝐵 =
0
1

Composite matrix of Observability, 𝑄0 =

𝐷 = 0

𝐶𝑇 𝐴𝑇𝐶𝑇

𝐶𝑇 =
1
0

𝑋1

𝑋2

𝑿 𝒕

𝒀 𝒕

𝑌 = 1 0

= 𝑨𝑿 𝒕

= 𝑪𝑿 𝒕

+𝑩𝑼(𝒕)

+𝑫𝑼(𝒕)1 1
−2 −1

𝐶 = 1
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1 0
1 1

1 0
1 1

𝑄𝑂 =

𝑄𝑂 = = 1

Since the rank of 𝑸𝑶=2 , and also 𝑸𝑪 = 𝟏 ≠ 𝟎 then the system is  completely Observable.

𝐴 =
1 1

−2 −1
𝐶𝑇 =

1
0

𝐴𝑇 =
1 −2
1 −1

1 −2 1
1 −1 0

𝐴𝑇𝐶𝑇 = =
1
1

𝑄0 = 𝐶𝑇
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𝐴𝑇𝐶𝑇

≠ 0
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Gilbert’s test for state Observability

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝒀 𝒕 = 𝑪𝑿 𝒕 + 𝑫𝑼(𝒕)

Case 1 :

If matrix A is an diagonal canonical form, then the transformation matrix is the identity matrix (T = I)

If 𝐶𝑡 = 𝐶𝑇 matrix and does not contain any zero element, the system is completely state

Observable.
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𝐴𝑡 = 𝐴

𝐴𝑡 = 𝑇−1𝐴𝑇

𝐵𝑡 = 𝑇−1𝐵

𝐶𝑡 = 𝐶𝑇

𝐷𝑡 = 𝐷

𝐵𝑡 = 𝐵 𝐶𝑡= 𝐶 𝐷𝑡 = 𝐷
Then,
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Case 2 : If matrix A is a not in diagonal canonical form following steps are followed.

Step 1 : Find Eigen value of matrix A

λ𝐼 − 𝐴 = 0

Step 2 : Find the transformation matrix

Develop Vander monde matrix of A which will be used as transformation matrix.

Step 3 : Find 𝐶𝑡 = CT

If 𝐶𝑡 = 𝐶𝑇 matrix and does not contain any zero element, the system is completely state

Observable.
34Department of Mechanical Engineering



Department of Mechanical Engineering

Example 1 : Determine the observability of a state model by Gilbert’s test.

𝑋1

𝑋2

𝑋3

=
0 1 0
0 0 1
0 −2 −3

𝑋1

𝑋2

𝑋3

0

1
+ 0 𝑈 𝑌 =

Solution:

Considering with standard equation

𝐴 =
0 1 0
0 0 1
0 −2 −3

𝐵 =
0
0
1

Since matrixA is not canonical, find Eigen values of A.

3 4 1

𝑋1

𝑋2

𝑋3

𝑿 𝒕 = 𝑨𝑿 𝒕 +𝑩𝑼(𝒕)

𝒀 𝒕 = 𝑪𝑿 𝒕 +𝑫𝑼(𝒕)

𝐶 = 3 4 1
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𝐷 = 0
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λ𝐼 − 𝐴 = 0

1 0 0
λ 0 1 0

0 0 1
− = 0

λ𝐼 − 𝐴 =

0 1 0
0 0 1
0 −2 −3

λ −1 0
0 λ −1
0 2 λ + 3

= 0

λ λ2 + 3λ − (−2) + 1 0 + 0 = 0

𝝀𝟑 + 𝟑𝝀𝟐 + 𝟐𝝀 = 𝟎

Roots of above equation
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𝝀1 = 0 𝝀2 = −1 𝝀3 = −2
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Find Vander monde matrix

𝝀1 = 0 𝝀2 = −1 𝝀3 = −2

𝑇 =
1 1 1
0 −1 −2
0 1 4

Transform the model into canonical form

𝐶𝑡= 𝐶𝑇

1 1 1
𝐶𝑡== 3 4 1 0 −1 −2

0 1 4

𝐶𝑡 == 3 0 −1
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Since one elements of the Matrix 𝑪𝒕 are zero, 

the system is not Completely Observable.
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Model Question Paper

Paper 1 

Paper 2
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Any Questions…?
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