Module 3.a
RESONANT CIRCUITS

Objectives:

1. To study resonant circuits both in time and frequency domains.

2. Describe the conditions for electrical resonance.

3. Describe the mathematical strategy to develop the resonant
frequency expression for a given resonant circuit.

4. Determine the resonant frequency of series, parallel, and
series—parallel circuits.

5. Describe the quality factor.

6. Determine the quality factor of series, parallel, and series—parallel circuits.
7. Determine the three dB bandwidth from the resonant frequency and
quality factor.

8. Decide whether a resonant circuit has a low Q or a high Q in order
to select the 3 dB determination approach.

6.1 Introduction

A.C Circuits made up of resistors, inductors and capacitors are said to be resonant circuits when
the current drawn from the supply is in phase with the impressed sinusoidal voltage. Then

1. the resultant reactance or susceptance is zero.
2. the circuit behaves as a resistive circuit.

3. the power factor is unity.

A second order series resonant circuit consists of R, I and C' in series. At resonance, voltages
across C' and L are equal and opposite and these voltages are many times greater than the applied
voltage. They may present a dangerous shock hazard.

A second order parallel resonant circuit consists of R, L and C' in parallel. At resonance,
currents in L and C are circulating currents and they are considerably larger than the input current.
Unless proper consideration is given to the magnitude of these currents, they may become very
large enough to destroy the circuit elements.

Resonance is the phenomenon which finds its applications in communication circuits: The
ability of a radio or Television receiver (1) to select a particular frequency or a narrow band of
frequencies transmitted by broad casting stations or (2) to suppress a band of frequencies from
other broad casting stations, is based on resonance.

Thus resonance is desired in tuned circuits, design of filters, signal processing and control
engineering. But it is to be avoided in other circuits. It is to be noted that if R = 0 in a series
RLC circuit, the circuits acts as a short circuit at resonance and if R = oo in parallel RLC circuit,
the circuit acts as an open circuit at resonance.
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6.2 Transfer Functions

As w is varied to achieve resonance, electrical quantities are expressed as functions of w, normally
denoted by F'(jw) and are called transfer functions. Accordingly the following notations are used.

Vi
Z(jw) = 7 8:1)) = Impedance function
(i
Y(jw) = V((‘;u;)) = Admittance function
Voli
G(jw) = 2(‘7.w) = Voltage ratio transfer function
Vi(jw)
I(jw)

a(jw) = = Current ratio transfer function

—

I (jw)

If we put jw = s then the above quantities will be Z(s),Y (s), G(s), a(s) respectively. These
are treated later in this book.

6.3 Series Resonance P L C

—
Fig. 6.1 represents a series resonant circuit. VVWA—5TT0

Resonance can be achieved by

1. varying frequency w O
2. varying the inductance L Eatw

3. varying the capacitance C Figure 6.1 Series Resonant Circuit

The current in the circuit is
E E

I = - = -
R+j(Xr—X¢) R+jX
At resonance, X is zero. If wy is the frequency at which resonance occurs, then

1
wol = —— or wyg = ——= = resonant frequency.
woC VILC
The current at resonance is I,,, = — = maximum current.

The phasor diagram for this condition is shown in Fig. 6.2.
The variation of current with frequency is shown in Fig. 6.3.

1
VL=1177XL
> - I
,IIIR:E [m
> (0
V. =1,X,
Figure 6.2 Figure 6.3

402



It is observed that there are two frequencies, one above and the other below the resonant
frequency, wg at which current is same.

1
Fig. 6.4 represents the variations of X = wl; X¢ = - and |Z| with w.
w

. 1 . .
From the equation wy = —— we see that any constant product of L and C give a particular

VILC

resonant frequency even if the ratio — is different. The frequency of a constant frequency source

can also be a resonant frequency for a number of L and C' combinations. Fig. 6.5 shows how the

L
sharpness of tuning is affected by different C ratios, but the product LC' remaining constant.

‘Z‘ «},\,

]
|
|
|
|
|
|
|
|
:

@,

Figure 6.4 Figure 6.5

L . . . . L
For larger — ratio, current varies more abruptly in the region of wg. Many applications call for

narrow band that pass the signal at one frequency and tend to reject signals at other frequencies.
6.4 Bandwidth, Quality Factor and Half Power Frequencies

At resonance I = I, and the power dissipated is
P,, = I R watts.

Im

V2

When the current is [ = power dissipated is

P 2
B M watts.
2 2

From w — I characteristic shown in Fig. 6.3, it is observed that there are two frequencies

I, . .
w1 and wg at which the current is I = ok As at these frequencies the power is only one half of

that at wy, these are called half power frequencies or cut off frequencies.

i current at half power frequencies I 1
The ratio, - = = —
Maximum current V2I, V2
1
When expressed in dB it is 20 log — = —3dB.

V2
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Therefore w; and wq are also called —3 dB frequencies.

I?Tl E . . . .
As — = ———, the magnitude of the impedance at half-power frequencies is
/2 V2R g p p q
V2R =R+ (X1 - X0)|
Therefore, the resultant reactance, X = X7, — X = R.

The frequency range between half - power frequencies is wy — wy, and it is referred to as
passband or band width.

BW =wy —w; = B.
The sharpness of tuning depends on the ratio —, a small ratio indicating a high degree of
selectivity. The quality factor of a circuit can be expressed in terms of R and L of the inductor.
woL

lity factor = Q = —
Quality factor = Q 7

1
Writing wg = 27 f and multiplying numerator and denominator by 5],2,1, we get,

1 2 1 2
sLI sLI,
Q=2mfot—5- =2m X T —
5Im”R 5Im”RT
9 Maximum energy stored
=2

total energy lost in a period
Selectivity is the reciprocal of Q.

As Q:%andng:wo%,
1
©= R
and since wy = L we have
VILC 1 /L
°=rVe

6.5 Expressions for w; and w,, and Bandwidth
At half power frequencies w; and ws,
_E E
V2R R 4 (Xp, - X))

1
X, — Xc| =R ie., }wL— —|=R
wC
1
Atw = w9, R = L— —
w2 (.(JQC

Simplifying, w3LC —wyCR—1=0
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Solving, we get

RC ++VR?C?+4LC R
wy = =

R\* 1
- —_ — 6.1
2LC 2L+ <2L> +LC ©.D
Note that only + sign is taken before the square root. This is done to ensure that wy is always
positive.
Atw = wq, I
w0 C w1
= WILCH+wCR-1=0
Solving,

_ —RC +VR2CZ 1+ 4LC
Wi = 2LC

_-R_ (R 2+ 1
2L 2L LC

While determining w1, only positive value is considered.
Subtracting equation(6.1) from equation (6.2), we get

6.2)

R
wp—wp == Band width.
L
Since Q = %, Band width is expressed as

R w
Bzwg—wlz— 0

L Q
and therefore W _ %
wy—w; B
Multiplying equations (6.1) and (6.2), we get
R? N 1 R? 1 9
Wwy=—5+=7———5 = —— =W
YRT a4 Lo Az e 0
or

Wy = \/Wi1w2

The resonance frequency is the geometric mean of half power frequencies.
R
Normally — << —

,in which case Q > 5
2L v LC @=

R 1
Then,

R 1
~_ — and wor~ — 4 ——
WIETop TN Te M=ot re

-+ dw= oot

o7, wp anad wy = wo

2L
w1 + wo
wyp=—"-

= Arithmetic mean of w; and wsy

Since — = —, Equations for w; and w» as given by equations (6.1) and (6.2) can be expressed
in terms of Q as
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2Q

R 1
Normally, — << —= and then Q) > 5.

2L vV ILC

Consequently wy and wo can be approximated as

L R, [T _ R, B,
N="9r "V~ o THOT T T

NRM/1 A
“2=57 LC~ Top T T g T

so that wp =

6.6 Frequency Response of Voltage across L and C

As frequency is varied, both the voltages across I and C increase with frequency upto wg and
they are equal at wg. But their maximum values do not occur at wqg. V. reaches its maximum at
w < wg and V7, reaches its maximum at w > wq. This can be verified by calculating the frequency

at which each occurs.

6.7 Expression for w at which v; is Maximum

Current in the circuit shown in Figure 6.1 is

1 1\?2
“eolgt ”(@)

Similarly wi=wo | —— +4/1+ (_

FE
I p—
VR + (0L — L)
Voltage across L is
FwlL
Vi = wll = Y :
VR + (L - 2)
Squaring
9 E202 L2
- 2
R?2 + (wL — %)
2
This is maximum when v, =0
dw
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2
1
E?L% |{ R? C—-— 2w—w?{2(wL - — | (L =
{ +(°" wC) v v oo + 2 0
2 1
R? L-—) =|wL-— L+ —
+<‘” ¥ ) (” w0> (“’ +w0>
1 1
2 2 _ 2
R+ s -2 =2 - —
R%W2C? +1 - 2% LC = —1
or Ww?(2LC — R*C?) =2
w2 = —2
- 2LC — R2C?
- 1
- R2C
re (1-5€)
Let this frequency be wr,.
1
Then, w? =w? T
1 - W
1
wr, =woy [ -
]. - 2_Q2
That is, wy, > wy.
6.8 Expression for w at which V- is Maximum
E
Now Vo =
wC’\/RQ + (wQL — L)2
E2
VE = —
w?2(C? <R2 + (w — T) )
. : d
This is maximum when — (V) = 0.
w
That is,
2|, 1 ) 1\?
— 2 (wL — — ——— ) +2wiR L—-— =0
c2 ¥ (“’ wC> ( w20> Ayt (“’ wC’)
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1 I
2 2712

I e — 2 =
R+ lm+ 5~ 26

Let this frequency be we

1
2Q?

we = wo 1-—

i.e., we < wo

w
Variations of V> and V7, as functions of w
are shown in Fig. 6.6.

Figure 6.6
FE FE
We know that Vg = = \/{RQ 07 (20 D7) (6.3)
W2LC—1)2 W + (w —
\/ 202{R2+( 202) }

Consider w?C?R? + (w?LC — 1)? and at w = we. Then equation(6.3) becomes

1 1 2
WEC?R? + (WALC —1)* = 3(1 2Q2>02R2 {3(1 2Q2>LC }

1 2
IRy (1 >__1}
ki ( ) 14 (1)
1 n 1 1 n 1 1 1
Q2 2Q2 4Q 104 | — 2Q4 4Q4 - Q2 4Q2
1 1
since 0= =wi and wyCR Q
Substituting the above expression in the denominator of equation (6.3), we get
E
Vem = —Ql
1 - @

6.9 Selectivity with Variable L

In a series resonant circuit connected to a constant voltage, with a constant frequency, when L is
varied to achieve resonance, the following conditions prevail:

408



E
1. X¢ is constant and ] = ——— when L = 0.

/B2 + X2

|4
2. With increase in L, X7, increases and I,,, = = at X7, = X¢

3. With further increase in L, I proceeds to fall.

All these conditions are depicted in Fig. 6.7 Vo pax occurs at
wp but V1, nax occurs at a point beyond wy.

L at which V}, becomes a maximum is obtained in terms of
other constants.

EXL L
Vi, = T
{R? + (X1, — Xc)*)? |
, EQX,? Figure 6.7
Vi -

TR+ (X, — X0)?
2

This i i h L —.
1S 1S maximum winen dXL

Therefore, {R? + (X1, — Xc)?} 22X, = X7 {2(X1, — X¢)}

R? 4+ X2 4+ X2 —2X1.Xo = X2 — X1 X¢

Therefore, X7, = RQXLCX%
Let the corresponding value of L is L,.
Then, Ly, = C(R2 + ng)
and Lg = value of L at wg such that
1
wol = WO—C.

6.10 Selectivity with Variable C

In a series resonant circuit connected to a constant voltage, constant frequency supply, if C is
varied to achive resonance, the following conditions prevail:

1.
2.

X1, is constant.

X varies as inversely as C

when C' =0, I=0.
1 v
whenwC = —, I=1, = —.
Q)L m R
with further increase in C, I starts decreasing as shown in Fig. 6.8, where (), is the value of
capacitance at maximum voltage across C' and Cj is the value of the capacitance at wy.
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C' at which V- becomes maximum can be determined in
terms of other circuit constants as follows.

EX¢ i

VC = |

VR + (X1, - Xc)? i
Vil PX C

T R+ (X1, — Xo)?
Figure 6.8
dv2
For maximim Vg, ﬁ =0

Then, {R*+ (X1, — Xc)?}2Xe — X2 {2(X1, — Xc)(-1)} =0
R+ X2+ X2 —2X1.Xo = X1 Xo + X

R? + X?
Xe= 0120
X,
Let the correrponding value of C be C),.
L
Then, CTYL = m.

6.11 Transfer Functions

6.11.1 Voltage ratio transfer function of a series resonant circuit and frequency response

For the circuit shown in Fig. 6.9, we can

write
C L
Vo(jw) R
H(jw) = = = .
( Vi(jw)  R+j(wl — %) "
1 |4 RV
= (Wl 1 _
L+ 1% — wCR}
1
= 7 " Figure 6.9
c ) woll (
1 ke — e
1

145Q [;’—0—%}

el

1402z - o]

N[
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Let 6 be a measure of the deviation in w from wy. It is defined as

s§=Y W _ Y 4
wo wo
w o wo 1 (64+1)2—1  62+26
e wyg @ w (8+1) 6+1 641 6+1

For small deviations from wg, § << 1. Then,

YB Lo
wo w
1

1 ~1
= - = / —tan " 2 )
1472Q6 (/1 +4Q282 Q

Then, H(jw)

The amplitfude and phase response curves are as shown in Fig. 6.10.

90° b
b
450-r=s SR
¢ 1\ ! »
Wy, | @
P L\
1
) | »

-90°

Figure 6.10 (a) and (b): Amplitude and Phase response of a series resonance circuit

6.11.2 Impedance function

The Impedance as a function of jw is given by

2
:R\/1+Q2<ﬁ_ﬂ> /can_1Q<i—ﬂ>
wo w wo w

For small deviations from wg, we can write

Z(jw) ~ R[1 + j2Q6] = R\/1 + 4Q%82 tan™' 2Q6
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6.12 Parallel Resonance

The dual of a series resonant circuit is often considered as a parallel resonant circuit and it is as

shown in Fig. 6.11.
The phasor diagram for resonance is shown in Fig. 6.12.
The admittance as seen by the current source is

Y(jw)=Yr+ Y, +Yc

1 1
:—+j(wC——>:G+jB
wlL

R
Io=VoC=VYe
e
—-
[R¢ IL# 1(,‘# 1: VIR >
! R L —cC
I, =VloL = VY
Figure 6.11 Parallel Resonance Circuit Figure 6.12 Phasor Diagram

If the resonance occurs at wq, then the susceptance B is zero. That is,

1
C=_——
wo woL
or
Ly
wo = Tra SecC.
0" VIC

At resonance,
Ico = —1Io = jwoCRI

and
Irc=1Ico+1Ir0=0

The quality factor, as in the case of series resonant circuit is defined as

Maximum energy stored

=2
@ 7TEnergy dissipated in a period
12
§C‘/m
1Via
2R
=27 foCR = wyCR.

1
Si C=——
ince wo ool

R

wOL'

=27
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On either side of wy there are two frequencies at which
the voltage is same. At resonance, the voltage is maxi-
mum and is given by V,,, = IR and is evident from the

response curve as shown in Fig. 6.13. At this frequency,
2

p = py = fm watts. The frequencies at which the
voltage is — times the maximum voltage are called half 0 @1 Wy @ "
V2 e
power frequencies or cut off frequencies, since at these
frequencies, Figure 6.13
(%) v
1; = \/é = 2—%’{ = half of the maximum power.
tany w, v 1 L . 1
"R\ T LL
At wy and wo,
|V ! 1Y* + | wC LY’
= —-— = —_— w _——
V2R R wl
Squaring,
1 1 1)°
= — o
B2 TR <“ wL)
1 1
Theref C-——)==
erefore, <w " L> 7
Atw = wo,
1 1
C——=—
YT WL TR
LC—-1=—
Wy R
WILCR — R —wy [, =0
I L++L?+4LCR?
ence wy =
’ 2 2LCR
Note that only positive sign is used before the square root to ensure that wy is positive.
1 1\ 1
Th = — —
s “2=5gpc t \/(230) T 1e
Similarl = + Ly’ + :
imailar = - y - -
s “1= "3RC 2rC) T IC
So that, bandwidth 1

Bzwg—wlz—

RC
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and

Thus,

As

Since

and

Using

and

’

1
RGN
WO = \/W1iw2
1 R
wp = — and =wyRC = —
0 T Q = wo ool
R /C
= —vVLC = Ry/—
Q L L
1 B
2RC 2
B B\?
w2:§+ E +W0
——B+ B 2+w2
w1=Ty 2 0
wo
B=2,
Q _
L 1+(1)
w2 =wo | =— —
2 0 20 20 J
w1 = wo 2Q

6.13 Transfer Function and Frequency Response

The transfer function for a parallel RLC circuit shown in
Fig. 6.14. is H(jw), the current ratio transfer function.

H(jw) =

In(jw) _ 1
L(jw) RY(jw)
1 B 1
LtjwC-2L) 1+4R(wC- L)
1 1

1+j(waCR_wQR) 1+JQ<§O_M§>

wo wowr,

As in the case of series resonance, here also let

w — wy w 1
wo B wo

6:

1 2
b (m)

Figure 6.14 Parallel RLC Circuit
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then,
woowy 8% 426

wyp w o+1

For § << 1, for small deviations from wy

w W
= Do
wo w

Therefore,
1

H(jw) = 15200

6.14 Resonance in a Two Branch RL — RC Parallel Circuit

Consider the two branch parallel circuit shown in Fig. 6.15. Let E be the voltage across each of
the parallel circuit shown in the figure. The vector diagram at resonance is shown in Figure 6.1.

Ica
A
EBc |
I R; Re AN
EG N
oL / -F
) 7.
L ——c EB,
]L
Figure 6.15 Two branch Parallel Circuit Figure 6.16

The admittance of the circuit is Y (jw) = G, — jBr, + G¢ + jBe
For resonance,
By, = Bg

If this occurs at w = wy,
1
wol >C
then 2 - 272 p2 =0 1
RL% + wp L RC + e

_ u)oc
CRZwWEC?+1

L(14w2C? R:)=C(R2 + W2 L?)
WA(LC?* R% —I°C)=R2C — L
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2
-1
w2 = R’y C

07 LC? RZ - I2C

1 RRC-L 1 Ri-%

- LC(RLC-L) LC(RL-%)
1 |R3-%
Therefore, wy = L ¢
" VIc\ R - L

This is the expression for resonant frequency. It is to be noted that
1. resonance is not possible for certain combination of circuit elements unlike in a series
circuit where resonance is always possible.

2. resonance is also possible by varying of Ry, or R¢.

Consider the case where

L
R.L < = < R?
c<g 7

or

L
R? < = < R?
L<g c

In both these cases, the quantity under radical is negative and therefore resonance is not pos-
sible.

The admittance at resonance of the above parallel circuit is

R RC
Yo = 2 L 5 T 53 2 S
RL+XL0 RC+XC0

where X, and X, are the inductive and capacitive reactances respectively at resonance.

L
If Ri=Ro#4|
1

then wy = —
°T Vit
asin R, L, C series circuit.
L

which means I
R? :R%:R2:5:XLXC.

X X
Then, Bp—Bo= =t - 2
RZ+X? RL+X2

1 1

— _— :0
X +Xe Xp+Xce
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In this case, the circuit acts as a pure resistive circuit irrespective of frequency. That is, the
circuit is resonant for all frequencies.
In this case the circuit admittance is
R R
V=R 2t R2 X2
L+ AL ctAc
_n R?+ X7 + R? + X2
RY 4+ R2(X7 4+ X2) + X7 X2
2R? + X7 + X2,
2RY+ R2(X? + X2)

R [2R2+X%+X§,
2

T R? [2R?+ X7 + X2

7=R=

SR s

or

6.14.1 Resonance by varying inductance
If resonance is achieved by varying only L in the circuit shown in Figure 6.15 but with constant
current constant frequency source, then the condition for resonance is

By, = B¢
XL XC XC‘ 2 2 2
= = = —5 where Z;=Rs+ Xz
R? +X? RL+XZ Z2
Then, X?Xo — X174 + XcR? =0

ZE £/ Z¢ — AXELR?
Xr =
g 2X¢
2 4 2 P2 : L
Zo*/Z5 —AXERY since X1, X¢o = C

Solving, for X we get

Therefore, L=

2| Q

The following conditions arise:

1. If Zé >4X (2; R%, L has two values for the circuit to resonate.

1
2. For Z4, = 4X2 R2, L = §CZ(23 for reasonance.

3. For Zé <4X (2; RQL, No value of I makes the circuit to resonate.
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6.14.2 Resonance by varying capacitance

As in the previous case, we have at resonance,,

Br, = Be
Xc Xt 5 p2 | 42
= ———=5 = =5, where 77 = R} + X7,
RL+ X% 7%
Simplifying we get,
XiXp, — XcZ2 + RZX, =0
. 72 £,/7% —AXZRZ
©- 2X,
2L
Therefore, C=

724+, /74 —4X? R,

The following conditions arise:

1. For Z% >4X % R%, there are two values for C to resonante.
2L

—

Z7,

3. For Z % <4X % RQC, no value of C' makes the circuit to resonate.

2. For Z} = 4X? R2, resonance occurs at C' =

6.14.3 Resonance by varying Ry, or R¢

It is often possible to adjust a two branch parallel combination to resonate by varying either Ry,

or Rc. This is because, when the supply is of constant current and, constant frequency, these

resistors control inphase and quadratare components of the currents in the two parallel paths.
From the condition By, = B¢, we get

X,  Xe
R? + X2 R%+ X2
X1,
R2 - X—CR% "‘XLXC - X%
X
Ry = \/X—SR%. + X Xo — X2 (6.4)

This equation gives the value of Ry, for resonance when all other quantities are constant and
the term under radical is positive.

Similarly if only R is variable, keeping all other quantities constant, the value of R¢ for
resonanace is given by

X
Re = \/—CR% + X Xe — X2,
Xy,

provided the term under radical is positive.
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6.15 Practical Parallel and Series Resonant Circuits

A practical resonant parallel circuit contains an inductive coil of resistance I and inductance L in
parallel with a capacitor C' as shown in Fig. 6.17. It is called a tank circuit because it stores energy
in the magnetic field of the coil and in the electric field of the capacitor. Note that resistance R¢
of the capacitor is negligibly small.

Condition for parallel resonance is shown by the phasor diagram of Fig. 6.18.

Ic = Ip,sin¢
That is, Bc = By,
wlL
T Rrer Y

Let the value of w which satisfy this condition be wy.

L
Then, R? + WiLl? = o (6.5)
L 1 1 R2C
2 _ _p2) - _ -
“’0_<C R>L2 LC(l L)
1 R2C
W= 1-— (6.6)

]1_
Figure 6.17 Figure 6.18

Admittance of the circuit shown in figure 6.17 is

Y(jw) = ——— + jwC
Uw) = 53700 ¥
R Jwl .
— — C
B1otl: Rrore ¢
Atw = wy, Y (jw) is purely real.
Hence Y (jwo) = __R__ (6.7)
’ J0) = e + w2 '
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Substituting for wq in equation (6.7),

. R
Y(]WO) = R2—|—w3L2 =

RC

Al =

and the circuit is a pure resistive with Ry = R which is called the dynamic resistance of

2
the circuit. This is greater than R if there is resonance. However, note that if

no resonance.

> 1, there is

Fig. 6.19 shows a practical series resonant circuit. The input impedance as a function of w is

wC

2w) = jelt T e TG aree

Condition for resonance is

wC
wh=cri2ce
C 1 1 1
2_(C _ e\t _ L 1
v _<L G>C2 LC C2R?
1 L
= o\~ Figure 6.19

w = ! 1-— L
VIO CR?

Impedance at resonance is

G G L
ZO = — = —
G? + wC? % CR
. . . L
The circuit at resonance is a purely resistive, and Zg = Rg = R However, note that here
also resonance is not possible for > 1.
P CR?

In both the circuits, shown in Figs 6.18 and 6.19, resonance is achieved by varying either C' or
L until the input impedance or admittance is real and this process is called tuning. For this reason
these circuits are called tuned circuits.

Series circuits

EXAMPLE KoMl
Two coils, one of Ry = 0.51 2, L; = 32 mH, the other of Ry = 1.3 Q2 and Ly = 15 mH and

two capacitors of 25 uF and 62 pF are all in series with a resistance of 0.24 (). Determine the
following for this circuit

(i) Resonance frequency
(i) @ of each coil
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(iii) @ of the circuit
(iv) Cut off frequencies

(v) Power dissipated at resonance if £ = 10 V.

SOLUTION
From the given values, we find that

Rs=0.5141.340.24 = 2.05Q
Ly =32415=47mH

25 x 62
O, = 22202 F — 17.816 uF
87
(1) Resonant frequency: )
VLG
B 1
VAT x 1073 x 17.816 x 100
= 1092.8 rad/ sec
(ii) Q of coils: I
. wola
For Coil 1 =
or Coil 1, Q1 7
1092. 2x1073
_ 092.8 x 32 x 10  G8.ET
0.51
L
For Coil 2, Qy = 202
Ry
1092. -3
_ 092.8 x 15 x 10 _ 196
1.3
(iii) @ of the circuit: I
_ Wols
Q= R,
1092. -3
_ 092.8 x 47 x 10 _ 95
2.05
(iv) Cut off frequencies: Band width is,
wo  1092.8
B=—= =43.72
Q 25

Considering ) > 5, the cut off frequencies,

B
wa1 = wo o = 1002.8 + 21.856
Therefore, wg = 1115 rad/sec and w; = 1071 rad/ sec.
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(v) Power dissipated at resonance:
Given E =10V

We know that at resonance, only the resistance portion will come in to effect. Therefore

E? 107
P=—=—=4878W
R 205
EXAMPLE [KeW4
For the circuit shown in Fig. 6.20, find the out put voltages at
) w=wo 125kQ  312mH  125pF
(i) w=wq
(i) w = wo
when v (t) = 800 coswt mV. () 50kQ < Y0
Figure 6.20
SOLUTION
For the circuit, using the values given, we can find that resonant frequency
1
wp = —
vV LC
1

- - 6
i imxore  oxt rad/ sec

Quality factor:

- ng
@="g
_16x10°%x312x107% <
B 62.5 x 103 B
Band width:
wo
B=—
Q
1.6 x 10°
= % = 0.2 x 10° rad/ sec
As Q > 5,
B
w271 = Wy + E
= (1.6 + 0.1)10° rad/ sec
Hence, wy = 1.7 x 10° rad/ sec
and wy = 1.5 x 10° rad/ sec
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(i) Output voltage at wy:

Using the relationship of transfer function, we get

. 501,
H(]w”w:wo = 625?

=0.8 0°

Since the current is maximum at resonance and is same in both resistors,

vo(t) = 0.8 x 800 cos(1.6 x 10%) mV
= 640 cos(1.6 x 10%) mV

Atw; and wo, Zin, = V2R, /A45°. Therefore,
Rout 50

H(jw)lymuy = T V2 x 625 /45°
= 0.5657 /45°
and H(jw)|,—,, = 0.5657 /45°

(i1) Out put voltage at w = wy
vo(t) = 0.5657 x 800 cos(1.6 x 10%¢ + 45°) mv
= 452.55 cos(1.6 x 10% 4+ 45°) mV
(iii) Out put voltage at w = wy
vo(t) = 452.55 cos(1.6 x 10%t — 45°) mV
EXAMPLE [Je¥]

In a series circuit R = 6 2, wg = 4.1 X 10% rad/sec, band width = 10° rad/sec. Compute L, C,
half power frequencies and Q.

SOLUTION
We know that Quality factor,
wo 4.1 x 106
@ B 100
woL
Al =2
S0, Q 7
QR 41 x 6
Theref L="-=—"—77--= H
erefore, o 11 %100 60 u
1
d =
an wOC'R
1
Hence, C= OR
1
=991.5 pF

T 41x105x41x6
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As Q) > 5,

B 10°
w2,1:w0i5:4.1 x 100 £ —
That is, wy = 4.15 x 10° rad/ sec
and wy = 4.05 x 10° rad/ sec
DNV 6.4

In a series resonant circuit, the current is maximum when C' = 500 pF and frequency is | MHz. If

C is changed to 600 pF, the current decreases by 50%. Find the resistance, inductance and quality
factor.

SOLUTION
H Case 1
Given, C = 500 pF

I1=1,

f=1x10°Hz

= wo = 27 x 10° rad/ sec
We know that 1
Wy = ——
" VIO
Therefore, Inductance,
1 1012
L = =
wiC (2w x 105)2 x 500
= 0.0507 mH
M Case 2
When C = 600 pF,
I, E
I=—=— Zl =2
> —ar — |A=2R
VR2+X2=2R = X=+3R
X=X, - X¢

1012

=27 x 10 x 0.0507 x 1073 — ———
21 x 106 x 600

= 318.56 — 265.26
=53.30=+3R
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Therefore resistance,

53.3
R=—==30.77Q
V3
Quality factor,
wol  318.56
= — = - ]. .
@ R 30.77 055

DAY 6.5
In a series circuit with B = 50 ©, L = 0.05 H and C = 20 pF, frequency is varied till the

voltage across C' is maximum. If the applied voltage is 100 V, find the maximum voltage across
the capacitor and the frequency at which it occurs. Repeat the problem for R = 10 .

SOLUTION
M Case 1

Given R=509, L=0.05H, C=20uF
‘We know that
1 103

wp = = = 102 rad/sec
T VIC V005 x20
Q:ng _ 10% % 0.05 _
R 20
Using the given value of £ =100 V in the relationship
E
VCm = —/Q—l
1 - W
100
we get Ve, = —=115.5V
1
l—4
and the corresponding frequency at this voltage is
1
wWeo = wWo 1-— TQ2
3 /1
=10 3= 707 rad/ sec
H Case 2
When R = 10 €,
103 x 0.05
= 5
@ 10
5 x 100
VCm = —X =502.5V

/ 1
-5
3 1
we =10%4/1 — 0= 990 rad/ sec
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EXAMPLE [KeXel
(i) A series resonant circuit is tuned to 1 MHz. The quality factor of the coil is 100. What is the

ratio of current at a frequency 20 kHz below resonance to the maximum current?
(ii) Find the frequency above resonance when the current is reduced to 90% of the maximum

current.

SOLUTION
(1) Let w, be the frequency 20 kHz below the resonance, I, be the current and Z, be the impedance

at this frequency.

Then wa = 10% — 20 x 10% = 980 kHz
w, wo 980 10°

wo w. 103 980
= —40.408 x 1072 = 26

Now the ratio of current,

I, R 1
Im, N Z(Y/ N ]‘ +j<26)Q
B 1
1 — 5100(40.408 x 10—3)
B 1
1 — 54.0408
= 0.2402 /76°
(ii) Let wy, be the frequency at which I, = 0.97,,
I, 1
Then — | =— =09
I?TL ]‘ + ](26)Q
1
1422=—"—
or —+ x 09
where z = (26)100
1
Then, 1+2%2=— =1.2346
0.81
or 2 =0.2346
and x = 0.4843
‘We know that
(5:&_1: 0.4843
wQ 200
0.4843
H =11
ence wy ( + 200 > wo
= 1.00242 MHz
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EXAMPLE KW
For the circuit shown in Fig. 6.21, obtain the values of wg and v¢ at wy.

10Q

Figure 6.21
SOLUTION
For the series circuit,
1
W)= —
vILC
1
=~ —103 rad/sec
(/4 x 3 x 1076
At this wg, I = I,,,. Therefore,
Vi =1251,,

and the circuit equation is
1.5 =Vi+ (I, —0-105V1)10+ jVi — Ve

Since Vi, = Vo, the above equation can be modified as
1.5 = 1251, 4+ 101, — 1.05 x 1251,

1.5
Hence, I, =—
3.75
d 1.5 8 4 x 108
n c = — —
& 375 108
=1600V
EXAMPLE [KeXs]
For the circuit shown in Fig. 6.22(a), obtain Z;,, and then find wg and Q).
10 Q 1 mH
—\WVWVW—U000 —°
- +
Vi
0.3 Vg ==30 nF ~— Zin
\°]
Figure 6.22(a)
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SOLUTION
Taking I as the input current, we get

Vr =101
and the controlled current source,
0.3V =0.3 x 101
=3I

The input impedance can be obtained using the standard formula

) Applied voltage V
Zin == — 6.6
() Input current I (6.6)
For futher analysis, the circuit is redrawn as shown in Fig. 6.22(b). It may be noted that the

controlled current source is transformed to its equivalent voltage source.

10°
300 10Q 10w

— W ——o+

Figure 6.22(b)

Referring Fig. 6.22(b), the circuit equation may be obtained as

o 4107 J3
V={(1 10 3w — — I 6.7
( O = T 30w x 109 ©.7)

Substituting equation (6.7) in equation (6.6), we get

4 % 10°
Zin =10+ j (10—% _= 0
30w

For resonance, Zj, should be purely real. This gives

4 x 109

1073w = =2
30w
Rearranging,
5  4x10°
W= —
30 x 103
=0.133 x 102
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Solving we get

w=wp=40.133 x 1012

=365 x 10% rad/ sec

Quality factor

o ng

=%
365 x 103 x 1073
- 10
=365

Parallel circuits

EXAMPLE KXY
For the circuit shown in Fig. 6.23(a), find wg, @, BW and half power frequencies and the out put

voltage V at wy.

400 uH 20k

1 mV - 80 k V4

Figure 6.23(a)

SOLUTION
Transforming the voltage source into current source, the circuit in Fig. 6.28(a) can be redrawn as

in Fig. 6.23(b).

1
Then, wy)=-—
Lc 20k

109
= —m I Q (*) :éOO pF
=5 x 10% rad/ sec ot O S0k

Q=wyCR
=5x 105 x 100 x 1072 x 100 x 10% = 50
wp 5% 10°

B= 0" s 105 rad/ sec

Figure 6.23(b)
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As Q > 10,
B
wa 1 = ﬂ:E —+ wo

15
:5xuﬁi{;

Hence, wg = 5.05 M rad/sec and w; = 4.95 M rad/ sec

Output voltage,
V =1 x 80 kQ
10 x 80 x 10°
~§5 % 106 x 400 x 10—6

=0.04 /=90° V

DNV 6.10

In a parallel RLC circuit, C = 50 uF. Determine BW, @), R and L for the following cases.
(1) wp = 100,we =120
(i) wy = 100,w; =80
SOLUTION
(i) wo =100,wy =120
We know that

wo = Jwiw2
Rearraging we get
2
w
w1 = —0
w2
1007

——— =83.33 rad/sec
120

Band width
B = w9 — W1
=120 — 83.33 = 36.67 rad/ sec

Quality factor,

100
- 36.67
‘We know that

Q- iL — woRC 6.8)

wo
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Rearraging equation (6.8),

Q
R=——
u.)()C
2. 108
_ 2100 e
100 x 50
1
Similarl L=——
imilarly w%C’
109
=————=2H
1002 x 50
(i1) wo = 100, w1 = 80: Solving the same way as in case (i), we get
1 2
wy = 1007 =125
80
BW = B =125 — 80 = 45 rad/ sec
100

=— =2.22
@ 45

EXAMPLE KRNl
In the circuit shown in Fig. 6.24(a), vs(¢) = 100 coswt volts. Find resonance frequency, quality

factor and obtain i1, 72, ¢3. What is the average power loss in 10 k{2. What is the maximum stored
energy in the inductors?

10k

I

vio o L
v, 50 mH >40k Y0 ==125uF

+
pem—

SOLUTION Figure 6.24(0)

The circuit in Fig. 6.24(a) is redrawn by replacing its voltage source by equivalent current source
as shown in Fig. 6.24(b).
Resonance frequency,

. V() * 10k 50 mH 40k —— 1-25uF
— 10000
wo = —F—

VLC
B 1
V50 x 1073 x 1.25 x 10—6 Figure 6.24(b)
= 4000 rad/ sec
Quality factor,
Q = woC Req
= 4000 x 1.25 x 1075 x 8 x 10°
=40
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At resonance, the current source will branch into resistors only. Hence,

v(t)

Lt
(10K [40k6) x 2t
10000

= 80 cos 4000t volts

11(t) lags v(t) by 90°. Therefore,

il(t)

io(t)

i3(t)

Average power in 10 k2:

Pav—

B 80
~ 50 x 103 x 4000
= 400 sin 4000t mA

sin 40000t

80
=% 054000t
10 % 1000 <08 4000

= 2co0s 4000t mA
= —i1(t)
= —400sin 4000t mA

80°
V2
10 x 103
=032 W

Maximum stored energy in the inductance:

E

EXAMPLE KNW4

1
:"Lli
2

1
::§><a)x10*3x(4m)x10*%2
=4mlJ]

For the network shown in Fig. 6.25(a), obtain Yj, and then use it to determine the resonance

frequency and quality factor.

4.4 mH

(e,

i 1 1 10V
sC4 R sL sL
O

Figure 6.25(a)

SOLUTION

Figure 6.25(b)

Considering V' as the input voltage and I as the input current, it can be found that

W0kQ x Ig=-V =10 Ip = -V
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The circuit in Fig. 6.25(a) is redrawn by replacing the controlled voltage source in to its
equivalent current source by taking s = jw and is shown in Fig. 6.25(b). Referring Fig. 6.25(b),

I—lOI‘J/:V(tGC'—l-l—f—i)

s R sL
1 11
= I=V|sC+—=+—
(g * R + SL>
Input admittance, with s is being replaced by jw is
I j11 x 103
m=— = — 4 jwl x 1078 -
AT wx 44
12500
=107 4 jwx 108 - 1220
w
At resonance, Yj, should be purely real. This enforces that
2500
10 8w = =——
w
Therefore, wo = V108 x 2500
= 500 K rad/ sec
Quality factor:
Q =wyRC
=500 x 10* x 10* x 1078
=50

DIV 6.13
In a parallel RLC circuit, cut off frequencies are 103 and 118 rad/sec. |Z| at w = 105 rad/sec is

10 Q. Find R, L and C.

SOLUTION
Given
w1 = 103 rad/ sec
we = 118 rad/ sec
Therefore

B =118 — 103 = 15 rad/ sec

Resonant frequency,

Wy = v/ wiw?2
= /118 x 103 = 110.245 rad/ sec
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Quality factor

_
Q_B
110.245
= =7.35
15
Admittance,
1 1
Y =— C—-—
R TJ (w wL)
1 R
=—= |1+ CR— —
(e (on- 5]
:l 14 wowC’R_ Ruwyg
R wo wwolL
. R
Since Q =wRC = —,
wOL
1 w wo
¢ V== |1+Q(= -
wltee (53]
w o wo 105 110.245
Note that, ——— = — = —0.0975
oletha wo  w 110245 105
1 )
Therefore, Y = 7 (14 57.35(—0.0975))
1
= —(1—-70.7168 6.12
7= ) (6.12)
1 5 123
= Y| =—=4/1 0.7168)" = —

1
It is given that |Z| = 10 and therefore |Y| = 0 Putting this value of Y in equation (6.9), we
get

i = 1.23l = R=1230Q
10 R

From the relationship Q@ = woC R, we get

woCR =17.35
7.35 1
Therefore, = 12.3 x 110.245
=5.42 uF
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Inductance, 1

L=—
w%C’

1

~ 110.245% x 5.42 x 10-3
—15.18 mH

EXAMPLE KRl

For the circuit shown in Fig. 6.26(a), find wq, V] at wp, and V; at a frequency 15 k rad/sec above

wo.

1V

100mH
5k —=7nF

Figure 6.26(a)

SOLUTION

+

\

Changing voltage source of Fig. 6.26(a) into its equivalent current source, the circuit is redrawn

as shown in Fig. 6.26(b).
Referring Fig. 6.26(b),

1
vLC

wo =

1

jw><3><1079A

T /100 x 10 05 x 10 x 10-9

=106 rad/sec

Voltage across the inductor at wy is,

100 mH
Sk == 10uF %

Figure 6.26(b)

Vi =410 x3x 1072 x 5 x 103

=415V
Quality factor,
Q =wyCR
=10% x 10 x 1079 x 5 x 10?
=50
Given w, = wqo + 15 k rad/sec
=15 x 10% 4 10°
= 1.015 x 10° rad/sec
Wq wo
Now, i 1015 — e = 0.03
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Using this relation in the equation,

! . We W
veglieae(-2)

1
t Y=—-"-(1 j .
we ge 5000( + 750 x 0.03)

=3.6 x 107* /56.31°

The corresponding value of V7 is
Vi=I1y™!
= jwg X 3 X 1079 xy~!

_ j1.015 x 10% x 3 x 107

3.6 x 10~ /56.31°
=8.444 /33.69° V

EXAMPLE ENE]
A parallel RLC circuit has a quality factor of 100 at unity power factor and operates at 1 kHz and

dissipates 1 Watt when driven by 1 A at 1 kHz. Find Bandwidth and the numerical values of R, L
and C.

SOLUTION
Given f =1kHz, P=1W,I =1A,Q =100,cos¢p =1

wo _ 10% x 2m

0 00 - 207 rad/sec

Therefore R=1Q

1
~ 207 x 100
=159 uH

1
T wiL

10
(207)2159
= 16.9 uF

C
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SV 6.16

For the circuit shown in Fig. 6.27, determine resonance frequency and the input impedance.

(o2

2Q 10
§SQ
0.1H ImF
(e,
Figure 6.27
SOLUTION
Equation for resonance frequency is
2 _ L
wp = | = (%)
LC\ R - &
B 1 22 —100
0.1 x10=3 \ 1 — 100
= 98.47 rad/sec
We know that
XL = ng
=98.47 x 0.1
=0.847Q
1
d Xo=——
an C nC
B 1
 98.47 x 1073
=10.16 2
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Admittance Y at resonance is purely real and is given by

Y =G1+Go+Gs

I TS DR
2+ (0.1wp) bl 1"'(1&)_05)
2 1 1
Y= e s 5 T T 062
=0.23S
and the input impedance,
1

Z===4350Q
Y

DVIi=n 6.17

The impedance of a parallel RLC circuit as a function of w is depicted in the diagram shown in
Fig. 6.28. Determine R, L and C of the circuit. What are the new values of wg and bandwidth if

C is increased by 4 times?

()
SOLUTION Figure 6.28
It can be seen from the figure that
wo = 10 rad/sec
B = 0.4rad/sec
R=100Q
Then Quality factor
wo 10
= — = — = 2
@ BW 04 g
We know that
1
e 7R
on 10 x 25
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As Q = wCR,

25
C = =0.25F
10 x 10
If C is increased by 4 times, the new value of C' is 1 Farad. Therefore,
1 1 5
wp=— = — =
" VIC 004
and the corresponding bandwith
1
B=—=0.1
RC

VYN 6.18
In a two branch RL — RC parallel resonant circuit, L = 0.4 H and C' = 40 pF. Obtain resonant
frequency for the following values of Ry, and Rc.

(1) Ry, =120; Rc =80

(i) Ry, = Rc = 80
(iii) Ry, =80; Rc =0
(iv) Ry, = Re = 100
v) Ry, = Rc =120

SOLUTION

As Ry, and R are given separately, we can use the following formula to calculate the resonant
frequency.

1
VvVLC

wo =

(6.10)

Let us compute the following values

LC =0.4x 40 x 1076

=16 x 10°
1
— =250
VvVLC
L 4
— =10
c
(1) Ry =120; Rc =80
Using equation (6.10),
1202 — 104
= 2 _—
wo =200\ 50z 11
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As the result is an imaginary number resonance is not possible in this case.

(i) R, = Rc =80

802 — 104
=250/ ———
o 802 — 10°
= 250 rad/sec
(i) R, =80; Rg =0
802 — 104
= 150 rad/sec
@iv) R;, = Rc =100
1002 — 104
=250/ ———
0 1002 — 10°

As the result is indeterminate, the circuit resonates at all frequencies.

(v) R, = Re =120

1202 — 104

=200\ ———

0 120% — 10°
= 250 rad/sec

EXAMPLE KHF
The following information is given in connection with a two branch parallel circuit:

Ryp, =108, Ro = 20 Q, X¢ = 40 Q, E = 120 V and frequency = 60 Hz. What are the
values of L for resonance and what currents are drawn from the supply under this condition?

SOLUTION
As the frequency is constant, the condition for resonance is

X, _  Xc
R?2 + X?  RZ+ X2
N X, 40 1
1024+ X7 202+402 50
o X7 — 50X, +100=0

Solving we get
X =47913Q or 2.087Q

Then the corresponding values of inductances are

X
L=="L_0127H or 5.536mH
w
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The supply current is

I=EG=E(GL+G¢)

1
Thus, 1=120 (—0 + 0.02> =1.7A for X; =47.913Q

102 + 47.9132
or [=120 g
10 + 2.0872

Exercise Problems
EP KX

+ 0.02> =12.7A for X; =2.087Q

Refer the circuit shown in Fig. E.P. 6.1, where R; is the source resistance

(a) Determine the transfer function of the circuit.
(b) Sketch the magnitude plot with R; # 0 and R; = 0.

R; L
+
Vi) Vo R
Figure E.P. 6.1
V, (s) Bs
Ans: H(s):v = RLR' -
() 524 (%)S-i-ﬁ
E.P 6.2

For the circuit shown in Fig. E.P. 6.2, calculate the following:
@fo, ()Q, (©) feys (dfe, and (e)B

125kQ  312mH 1.25pF

+ +
Vi) 50 kQ ()
o o
Figure E.P. 6.2

Ans: (2)254.65kHz ()8  (c)239.23kHz  (d) 271.06 kHz

(e) 31.83 kHz
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E.P 6.3

Refer the circuit shown in Fig. E.P. 6.3, find the output voltage, when (a) w = wq (b) w = w1, and

(©) w = wea.
125kQ  312mH 12.5pF

+

800 cos T mV S0kQS Vo

O
Figure E.P. 6.3

Ans: (a) 640 cos(1.6 x 106 t)mV
(b) 452.55 cos(1.5 x 106 t + 45°)mV
(c) 452.55cos(1.7 X 108 t —45°)mV

E.P 6.4

Refer the circuit shown in Fig. E.P. 6.4. Calculate Z;(s) and then find (a) wg and (b) Q.

10Q ImH
—AMA— T —o0
— Zin
0'3VR ——30nF -—
O
Figure E.P. 6.4

Ans: (a) 364.69 krad/sec, (b) 36

65

[Vs]

Refer the circuit shown in Fig. E.P. 6.5. Show that at resonance, |V, |max = —=——.

1
1—4622

Figure E.P. 6.5
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E.P 6.6
Refer the circuit given in Fig. E.P. 6.6, calculate wp, @ and |V, |max

0.4 Q 3 mH
—o0
12 coswt V 27 WF == vy,
0
Figure E.P. 6.6

Ans: 3513.64 rad/sec, 26.35, 316 volts.

E.P 6.7
A parallel network, which is driven by a variable frequency of 4 A current source has the following

values: R = 1kQ, L = 10 mH, C = 100 pF. Find the band width of the network, the half
power frequenies and the voltage across the network at half-power frequencies.

Ans: 10 rad/sec, 995 rad/sec, 10005 rad/sec

E.P 6.8
For the circuit shown in Fig. E.P. 6.8, determine the expression for the magnitude response, | Z;,|
, _ 1
versus w and Z;,, at wg = Jic
R
L
| | |
° |
Zin C
—
O
Figure E.P. 6.8
. o — (R—w2RLC)%+(wL)? o 1
Ans: (a) |Zln| - \/ 14+ (wRC)2 > (b) |Zm| - \/m

E.P 6.9
A coil under test may be represented by the model of L in series with R. The coil is connected in

series with a variable capacitor. A voltage source v(¢) = 10 cos 1000 ¢ volts is connected to the
coil. The capacitor is varied and it is found that the current is maximum when C = 10uF. Also,
when C' = 12.5uF, the current is 0.707 of the maximum value. Find @ of the coil at w = 1000
rad/sec.

Ans: 5
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EP 6.10

A fresher in the devices lab for sake of curiosity sets up a series RLC network as shown in Fig.

E.P.6.10. The capacitor can withstand very high voltages. Is it safe to touch the capacitor at
resonance? Find the voltage across the capacitor.

R=3.75Q L=4H

V=1520° ——C=025uF

Figure E.P. 6.10

Ans:  Not safe, |Ve|max = 1600V

Outcomes:

1. Analyze resonant cinits both intime and frequency domains.

2. Determine theresonant frequency and bandwidtH a series or paral circuit.

3. Sketch the impedance, current, andwer in resonant circuits.

4. Derive the network functiofor an RLC resonant circuit

5. Analyze the frequency response of an RLC resonant circuit

6. Performlaboratory measurements to determine thesfluency response of a circuit
7. Understandhe impact of component values on the BW, Q, and 0.

Resources:

1. http://www.electronics-tutorials.ws/accircuits/series-resonance.htmi
2. http://en.wikipedia.org/wiki/RLC_circuit

3. http://www.electronics-tutorials.ws/accircuits/series-circuit.html

4. http://en.wikipedia.org/wiki/LC_circuit
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UNIT - 4
TRANSIENT BEHAVIOUR AND
INITIAL CONDITIONS

Objectives:

1. To Develop and solve mathematical representations for
simple RLC circuits.

2. Compute initial conditions for current and voltage in first
order R-L and R-C capacitor and inductor circuits.

3. Compute time response of current and voltage in first order
R-L and R-C capacitor and inductor circuits.

4. Compute initial conditions for current and voltage in
second order RLC Circuits.

5. Compute time response of current and voltage in second
order RLC circuits.

6. Compute time response of current and voltage in second
order RC circuits.

4.1 Introduction

There are many reasons for studying initial and final conditions. The most important reason is that
the initial and final conditions evaluate the arbitrary constants that appear in the general solution
of a differential equation.

In this chapter, we concentrate on finding the change in selected variables in a circuit when
a switch is thrown open from closed position or vice versa. The time of throwing the switch is
considered to be ¢ = 0, and we want to determine the value of the variable at ¢ = 0~ and at
t = 0%, immediately before and after throwing the switch. Thus a switched circuit is an electrical
circuit with one or more switches that open or close at time ¢ = (0. We are very much interested
in the change in currents and voltages of energy storing elements after the switch is thrown since
these variables along with the sources will dictate the circuit behaviour for ¢ > 0.

Initial conditions in a network depend on the past history of the circuit (before t = 07) and
structure of the network at t = 0T, (after switching). Past history will show up in the form of
capacitor voltages and inductor currents. The computation of all voltages and currents and their
derivatives at t = 0" is the main aim of this chapter.

4.2 Initial and final conditions in elements

t=0

4.2.1 The inductor

(o,
The switch is closed at £ = 0. Hence t = 0~ corresponds i(t)
to the instant when the switch is just open and ¢t = 0T "
corresponds to the instant when the switch is just closed. <_> v L
The expression for current through the
inductor is given by
1 : Figure 4.1 Circuit for explaining
L= z / vdr switching action of an inductor
—0o0
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0~ t
1 1
= i=z/1)d7‘—|—z/?)d7‘
o o=

t
1
= i(t)=14(0 )+ 7 /’UdT
o=
Putting ¢+ = 0 on both sides, we get
ot
oty ey L
i(07)=14(07) 4+ — [ vdr
L
o=
= i(0T) =4(07)
The above equation means that the current in an inductor cannot change instantaneously.
Consequently, if i(07) = 0, we get 4(0"7) = 0. This means that at £ = 0T, inductor will act
as an open circuit, irrespective of the voltage across the terminals. If i(0~) = I,,, then i(0") = I,,.

In this case at t = 07, the inductor can be thought of as a current source of I, A. The equivalent
circuits of an inductor at t = 0™ is shown in Fig. 4.2.

Element Equivalent circuit at = 0"
(and initial condition)
L
o——J000—oO0 o ocC o}
I Ly
' (D)
oO———"J00—oO O O O
L

Figure 4.2 The initial-condition equivalent circuits of an inductor
The final-condition equivalent circuit of an inductor is derived from the basic relationship

= L—
v dt

di
Under steady condition, d_:‘ = 0. This means, v = 0 and hence L acts as short at £ = oo (final

or steady state). The final-condition equivalent circuits of an inductor is shown in Fig.4.3.

(Element Equivalent
(and initial condition) circuit at 1= o
L SC
o OO0 0 G °©
SC
Iy
—
o FIOO—0 o— I —©
L
/‘\

N

Figure 4.3 The final-condition equivalent circuit of an inductor
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4.2.2 The capacitor

The switch is closed at t = 0. Hence, t = 0~ Qg ©

corresponds to the instant when the switch is T

just open and ¢+ = 0T corresponds to the instant ; C?D v ==C
when the switch is just closed. The expression

for voltage across the capacitor is given by l

t
v = l / idr Figure 4.4 Circuit for explaining
C switching action of a Capacitor
— 00

0

- «ﬁ):é /

t
1
idT + E/ZdT
o=
;

o—
Evaluating the expression at t = 0T, we get

o+
v(0T) =v(07) + %/idT = o(0") =0(07)
i

Thus the voltage across a capacitor cannot change instantaneously.
If v(07) = 0, then v(0") = 0. This means that at t = 0™, capacitor C acts as short circuit.

Conversely, if v(07) = (IEO then v(0") = (IEO_ These conclusions are summarized in Fig. 4.5.

Element

e C. 1ve 1 1t « = 0O+
(and initial condition) Equivalent circuit at 1= 0

o | | o o o

C 11 O (o, u

Figure 4.5 Initial-condition equivalent circuits of a capacitor

The final-condition equivalent network is derived from the basic relationship

1=C—
dt
. dv .. ) .
Under steady state condition, 7 = 0. This is, at t = oo, 2 = 0. This means that t = oo

or in steady state, capacitor C' acts as an open circuit. The final condition equivalent circuits of a
capacitor is shown in Fig. 4.6.
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Element

(and initial condition) Equivalent circuit at /= oo

’ 0c
o 1 o o o © o
o — |~ o o m %o o
' /
9o
Yo~ Yo

Figure 4.6 Final-condition equivalent circuits of a capacitor

4.2.3 The resistor

The cause—effect relation for an ideal resistor is given by v = Ri. From this equation, we find that
the current through a resistor will change instantaneously if the voltage changes instantaneously.
Similarly, voltage will change instantaneously if current changes instantaneously.

4.3 Procedure for evaluating initial conditions

There is no unique procedure that must be followed in solving for initial conditions. We usually
solve for initial values of currents and voltages and then solve for the derivatives. For finding
initial values of currents and voltages, an equivalent network of the original network att = 07 is
constructed according to the following rules:

(1) Replace all inductors with open circuit or with current sources having the value of current
flowing att = 0.
(2) Replace all capacitors with short circuits or with a voltage source of value v, = q_(;) if there
is an initial charge.
(3) Resistors are left in the network without any changes.
EXAMPLE N

Refer the circuit shown in Fig. 4.7(a). Find i1(0") and i7,(0"). The circuit is in steady state
fort < 0.

L=1H
BHO0

T

Figure 4.7(a)
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SOLUTION

The symbol for the switch implies o0—oO
that it is open at ¢ = 0~ and then l i;(07) * *iL(Oi)

closed at t = 0%. The circuit is
in steady state with the sw1£ch. open. oA G) 0 o
This means that at ¢ = 0, induc-

tor L is short. Fig.4.7(b) shows the
original circuitatt = 0.

Using the current division principle,

Figure 4.7(b)
_2x1
1+l

Since the current in an inductor cannot change instantaneously, we have

in(07) 1A

in(0%) =iL(07) = 1A

Att = 07,41(07) = 2 —1 = 1A. Please note that the current in a resistor can change
instantaneously. Since at t = 0T, the switch is just closed, the voltage across R; will be equal to
zero because of the switch being short circuited and hence,

i1(07) = 0A

Thus, the current in the resistor changes abruptly form 1A to OA.

DI 4.2
Refer the circuit shown in Fig. 4.8. Find v (07). Assume that the switch was in closed state for
a long time.
+
V5V <J_r> ® v==c
Figure 4.8
SOLUTION

The symbol for the switch implies that it is closed at ¢ = 0~ and then opens at t = 0". Since the
circuit is in steady state with the switch closed, the capacitor is represented as an open circuit at
t = 0. The equivalent circuit at £ = 0 is as shown in Fig. 4.9.
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R,

ve(07) =i(0 )Ry

—VWW 0—oO
Using the principle of voltage divider, JJ
e [P
= 00 R, V(00
V. 5x1 V~5V <> O 2 c
ve(07) = —2 Ry = =25V ° -
R1+ Ro 1+1 T
Since the voltage across a capacitor cannot
change instaneously, we have Figure 4.9

ve(0T) =ve(07) = 2.5V
That is, when the switch is opened at t = 0, and if the source is removed from the circuit, still
ve(0T) remains at 2.5 V.

EXAMPLE ]
Refer the circuit shown in Fig 4.10. Find 7,(0") and v¢(0™7). The circuit is in steady state with

the switch in closed condition. =0

Figure 4.10

SOLUTION 2Q 3Q

i,(07) l
+0

Ye(07) I
-0

Figure 4.11

The symbol for the switch implies, it is closed

att = 0~ and then opens at t = 0. In order

to find v (0~) and i7,(0~) we replace the ca- SV
pacitor by an open circuit and the inductor by

a short circuit, as shown in Fig.4.11, because

in the steady state L acts as a short circuit and

C as an open circuit.

5
in(07)=——==1A
07 =573
Using the voltage divider principle, we note that
53
07) = =3V
ve07) =375

Then we note that:
ve(0) =ve(07) =3V
ir(07) =i (07)=2A



EXAMPLE i

In the given network, K is closed at ¢t = 0 with
zero current in the inductor. Find the values

di d*i
of i, 2 20 att =0+ if R = 8Q and I = 0.2H.
dt’ dt?

Refer the Fig. 4.12(a).

SOLUTION

The symbol for the switch implies that it is open
att = 0~ and then closes at t = 0T. Since the
current ¢ through the inductor at¢t = 0~ is zero, it
implies that (07) = i(0~) = 0.

di(0T) ond d?i(0")

To find
0 fin dt dt?

Applying KVL clockwise to the circuit shown in
Fig. 4.12(b), we get

di
Ri+ 12

12V <+> L=02H

Figure 4.12(a)

K R=38Q
0—oO VVVA

|

Figure 4.12(b)

=12
dt
= 8i 1 02% — 1 4.1)
1 . dt = .
Att = 07, the equation (4.1) becomes
di(0T)
8i(0%) +0.2———= =12
i0n +02=g
di(0T)
= 8x0+40.2 =12
O
di(0T) 12
= ==
dt 0.2
=60 A/sec
Differentiating equation (4.1) with respect to ¢, we get
s 02kl
dTdt2
Att = 0T, the above equation becomes
di(0T) d%i(0F)
8§——=+0.2 =0
a dt?
d%i(0")
= 8 x60+40.2 =0
HRT
d%i(0*
Hence 2(12 ) — 2400 A /sec?
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EXAMPLE KRS

di d%i
In the network shown in Fig. 4.13, the switch is closed at ¢ = 0. Determine ¢, d—;, 5; a

K
R=10Q L=1H

]

T

t=0

10V C=1uF

Figure 4.13

SOLUTION

tt=0t.

The symbol for the switch implies that it is open at £ = 0~ and then closes at # = 0. Since there

is no current through the inductor at ¢ = 0, it implies that i(0") = i(0~) = 0.

K R=10Q L=

IH
10V @ %C 1uF

Figure 4.14

Writing KVL clockwise for the circuit shown in Fig. 4.14, we get

t
. di 1 .
Ri +L£ + ol /Z(T)dT =10
0
d

- Ri+Ld—i+vC(t) =10
Putting ¢t = 0™ in equation (4.2a), we get
di (0T
Ri(0%)+L Zilt ) +oo (01) =10
di (07)
= Rx0+4+L 7 +0=10
di (07) 10
=—=10A

= 7 T 0 A/sec

Differentiating equation (4.2) with respect to ¢, we get
di d% i)
R—+L—+—F=0
a T e

4.2)

(4.2a)

257



Att = 0T, the above equation becomes

di (07) _d*%(0%) i(0%)

i a L dt? c 0

R x 10 Ldzi (0%) , 0 =0
- e e T

100 #i(07) _ 0
= taE T
2; (0+
Henceat t =0T, &2) = —100 A/sec?
dt
EXAMPLE JEiRe)

Refer the circuit shown in Fig. 4.15. The switch
K is changed from position 1 to position 2 at
t = 0. Steady-state condition having been

d
reached at position 1. Find the values of 4, d—z, 20V (J_r
2

d=i
— Nt
and@att—o.

SOLUTION

1 l R=10Q

Figure 4.15

The symbol for switch K implies that it is in position 1 at # = 0~ and in position 2 att = 0.
Under steady-state condition, inductor acts as a short circuit. Hence att = 07, the circuit diagram

is as shown in Fig. 4.16.
e 20
i(07) = 0= 2A
Since the current through an inductor cannot change
instantaneously, i (07) =4 (0~) = 2A. Since there is
no initial charge on the capacitor, vo (07) = 0. Since
the voltage across a capacitor cannot change instanta-
neously, vc (07) = vc (07) = 0. Hence at t = 0F
the circuit diagram is as shown in Fig. 4.17(a).
For t > 07, the circuit diagram is as shown in Fig. 4.1

R=10Q

@ O
R=1uF

Figure 4.17(a)

: K
R=10Q
20V (t) i) l !
7(b). Figure 4.16
R=10Q

K NVVV
2 %
O L=1H
i(?)

Figure 4.17(b)

_|

258



Applying KVL clockwise to the circuit shown in Fig. 4.17(b), we get

t
) di(t) 1 . B
Ri(t) + L i + ° /l(T)dT =0

0+

di(t
= Ri(t) + L% +oc(t) =0
Att = 0% equation (4.3a) becomes
di (0F
Ri (07) + L% +ve (07) =0
di (07)
= Rx2+1L p +0=0
= 20 + di (O+) =0
.
di (07)
= = —20 A/sec
dt
Differentiating equation (4.3) with respect to ¢, we get
di i i
R—+L—+—==0
dt + dt? + C

Att =0T, we get

di (0%) _d%*(07) 4(0T)
=gttt =0
d% (07) 2
= RX(—QO)-FLT-FE—O
d*i (0F
Hence, — ~ —2 x 10% A/sec?
EXAMPLE %y

4.3)

(4.3a)

In the network shown in Fig. 4.18, the switch is moved from position 1 to position 2 at t = 0. The

D .

di v
steady-state has been reached before switching. Calculate 7, —Z, and ar att =0T,

dt dit?
1 Z) 20Q2
<+ 20 ¢t=0
40V _
—— 1uF

1H T

Figure 4.18
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SOLUTION

The symbol for switch K implies that it is in posi-
tion 1 at + = 0~ and in position 2 at t = 0". Under
steady-state condition, a capacitor acts as an open cir-
cuit. Hence at t = 0, the circuit diagram is as shown
in Fig. 4.18(a).

We know that the voltage across a capacitor
cannot change instantaneously. This means that
ve (07) = v (07) =40 V.

Att=0",
cannot change instantaneously, ¢ (O+)
shown in Fig. 4.18(b).

The circuit diagram for t > 07 is as shown in Fig.4.18(c).

Je

20Q2

v.(07)=40V

]

Figure 4.18(a)

inductor is not energized. This means thati (0~) = 0. Since current in an inductor
i (07) = 0. Hence, the circuit diagram at ¢t = 0% is as

R=20V
200 K VWV
K VVVV
2
2
Figure 4.18(b) Figure 4.18(c)
Applying KVL clockwise, we get
Ri + L + / 4.4)
) d/
= Ri+LE +vc(t) =0
dt
Att =0T, we get
di(0F
Ri<0+) + L% + 7)C<0+) =0
di(0F
= 20 x 0+1Z<(1 ) ta0=0
di(0F
= ZEit ) = —40A/ sec
Diferentiating equation (4.4) with respect to ¢, we get
di —_d* i
T
Rdt e te =0
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Putting t = 0™ in the above equation, we get

di (0T d2i(0+ i(0F
RAiO) | 0 i)
dt dt? c
d%i(0%) 0
= R x(—40)+ L — =0
A+ L= T 5
d*i(0*
Hence 7d(t2 ) = 800A / sec?
EXAMPLE XS
In the network shown in Fig. 4.19, v1(t) = e~* for t > 0 and is zero for all t < 0. If the capacitor
d? &
is initially uncharged, determine the value of WU; and % att =07,
10Q
NV O,
Ry
D L c
v P R, S20Q v,
o
Figure 4.19
SOLUTION
Since the capacitor is initially uncharged, R, V(1)
v2(07) =0 —VVW : o,

Referring to Fig. 4.19(a) and applying KCL

at node vy (t): v,(1) <:L> 6 § R, v,

va(t) — vy (t) n Odvg(t) n va(t)

= O —
Ry dt Ry I O
1 1 dvg(t) V1 (f) =
= — 4+ — wu(t)+C =
Ry Ry dt Ry Figure 4.19(a)
d
= 0.150; + 0.05% =0.1c7" (4.5)
Putting ¢t = 07, we get
dva (0T
0.1502(07) + 0.05% =0.1
dvo (0T
= 0.15 x 0+ 0.05 ”igt ) _01
dvo (0T 0.1
= %:m = 2 Volts/ sec
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Differentiating equation (4.5) with respect to ¢, we get

dvy d?vy —t
0.15—= +0.05 = —0.1e 4.6
@ dt? ‘ (1.5
Putting t = 07 in equation (4.6), we find that
d?v3(01)  —0.1-0.3 9
22 - o005 —8 Volts/ sec
Again differentiating equation (4.6) with respect to t, we get
d?vy A3y
0.15— 4+ 0.05——= = 0.1e”" 4.7
az dt3 ¢ @7
d31)2

Putting + = 0% in equation (4.7) and solving for (01), we find that

dt3

a4

d3vy(07)  0.1+1.2

— 3
B o0 26 Volts/ sec

EXAMPLE RS
Refer the circuit shown in Fig. 4.20. The circuit is in steady state with switch K closed. Att = 0,

N . . dvg
the switch is opened. Determine the voltage across the switch, vx and ZK att =0t

v, dt
K ot
o— IV
t=0
|1
2v 1' | 12

5 F
Figure 4.20

SOLUTION

The switch remains closed at ¢ = 0~ and open at ¢ = 0. Under steady condition, inductor acts
as a short circuit and hence the circuit diagram at ¢t = 0~ is as shown in Fig. 4.21(a).

Therefore, v (07) = v (07)

=0V
For ¢t > 0 the circuit diagram is as shown in Fig. 4.21(b).

U (07)=0 Py = 1

O0—O

+ - %F

2V i(07) 10 PAY <+> i) 10
=2A —
Figure 4.21(a) Figure 4.21(b)
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dvg
i(t) = C——
i(t) o

At (t) =0T, we get
dvg (0T)
dt
Since the current through an inductor cannot change instantaneously, we get

i(07) =i(07) = 2A

i(0h)y=cC

(0T
Hence, 2= Cdv;\—(())
dt
dvg(0T) 2 2
_— = — = —= 4
o oI V/sec

EXAMPLE R0

In the given network, the switch K is opened at ¢ = 0. At¢ = 0T, solve for the values of v,

d2
and#’iH:zA,RzzoogandL:1H

v
1
T

it

O % p .

Figure 4.22
SOLUTION

The switch is opened at t = (. This means that at # = 0, it is closed and at t = 0™, it is open.

Since ir,(07) = 0, we getir,(07) = 0. The circuit at t = 0T is as shown in Fig. 4.23(a).

lv(?+) CL lvgr) liL
® % SLONESE 1
it |

Figure 4.23(a) Figure 4.23(b)

v(0T)=1IR
=2 x 200
=400 Volts

v
dt
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Refer to the circuit shown in Fig. 4.23(b).

For t > 0%, the KCL at node v(t) gives
t

t 1
I= % + 7 /U(T)dT 4.8)
0+
Differentiating both sides of equation (4.8) with respect to ¢, we get
Tdov(t) 1
= — —o(t 4.8
0 B dl L?)( ) (4.8a)

R dat L'
1 dv(0t) 1
= N T w400 =
= 500 dt + 1 x 400=10
+
= dvEl(z ) = -8 x10*V/sec

Again differentiating equation (4.8a), we get
1 d?(t)  1do(t) 0
R dt2 L dt

Att =0T, we get

1 d?0(0%)  1dv(0%) 0
200 dt? 1 dt

N d?v(0F)
dt?

=200 x 8 x 10*

=16 x 10 V/sec?

EXAMPLE RN
In the circuit shown in Fig. 4.24, a steady state is reached with switch K open. Att = 0, the

switch is closed. For element values given, determine the values of v,(0~) and v, (07).
10Q

+ L
sv( 2H
10Q

Figure 4.24
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SOLUTION

Att = 0, the switch is open and at t = 0T, the switch is closed. Under steady conditions,
inductor L acts as a short circuit. Also the steady state is reached with switch K open. Hence, the

circuit diagram at ¢ = 0~ is as shown in Fig.4.25(a).

o 5 5 2

0 =555 3

Using the voltage divider principle:
5% 20 10
1,(07) = X =—

10+ 20 3

Since the current in an inductor cannot change instantaneously,

2
ir,(07) =i (07) = 3 A.

Att = 0T, the circuit diagram is as shown in Fig. 4.25(b).

10Q 10Q
AVAVA'AY WWV
10Q (o) 202
10Q Ua(Of) 20Q — 7 Ub(0+)
— 1,(07)
K
i;(07) +
K ol sV <_> <¢> i(0)=2A
+
()
10Q ?
Figure 4.25(a) Figure 4.25(b)
Refer the circuit in Fig. 4.25(b).
KCL at node a:
0,(07) =5 0,(0%) 0, (07) —0(0F) 0
10 10 20 B
1 1 1 1 )
+\ | = il | _ R Y P
A TR T 20] u(07) 20} 10
KCL at node b:
vp(0F) — v, (07) 2, (0F) =5 n 2 0
20 10 3
1 1 1 5) 2
—v,(01) | = 0N |—=+—|=— -2
~ val )[20]+”b( ) 20+10] 10 3
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Solving the above two nodal equations, we get,

DY 4.12

dir,(0T)

dvc(07) and

Find i7,(0"),ve(0), 7

Assume that switch 1 has been opened and switch 2 has been closed for a long time and

steady—state conditions prevail at ¢ =

-©

7 for the circuit shown in Fig. 4.26.

0. o Switch2

N\ =
@ ?ﬁ

Switch 1

P+

| —

2Q
—’\/W\—ch ’\/\/V\
t=0
UC: F

SOLUTION

Att = 0, switch 1 is open and
switch 2 is closed, whereas att = 0T,
switch 1 is closed and switch 2 is
open.

t = 0~ by replacing the inductor
with a short circuit and the capacitor
with an open circuit as shown in Fig.
4.27(a).

in(07) =0

Figure 4.26
2A
S,
2Q 1Q
AMMW—O O AAVA'AY
First, let us redraw the circuit at
2V % -
T— v (0)
From Fig. 4.27(b), we find that Figure 4.27(a)
2x1=2V
2Q 1Q
= —VVW\N—O O0—
‘Q(O‘)
n o+ o)
2V<_> v, (07)
(o (@]
Figure 4.27(b)

* i(07)
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Applying KVL clockwise to the loop on the
right, we get
—ve(07)—24+1x0=0
= ve(07)=-2V 10V<+
Hence,at t=07: iL(0+):iL(0_):OA -
ve(0T) =ve(07) = =2V

The circuit diagram for ¢ > 0T is shown in

Fig. 4.27(c). Figure 4.27(c)
Applying KVL for right—hand mesh, we get
vr, —ve +1ir, =0
Att =0T, we get
vr,(07) = ve(01) —ir(0T)
=—2-0=-2V
diy,
We know that v, = L—
dt
Att =0T, we get
diL(O+) vr, <0+) —2
= : = —_— = —2A
dt L 1 / sec
Applying KCL at node X,
ve — 10 . .
5 +ic+i, =0
Consequently, at t = 0T
10 — v (0T
ic(0+)=# —i(0")=6-0=6A
dvc
Si ic=C——
ince ic o
dvc(0%)  ig(0T) 6
We get, % - o = g =12V /sec

VIS 4.13

For the circuit shown in Fig. 4.28, find:
(a) i(0") and v(0T)

0+ +
b) dz(d(i )and dvil(t) )

(c) i(o0) and v(o0)
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6Q
4Q
12V <+> V
T +
H 0.4F _‘iv
Figure 4.28

SOLUTION
(a) From the symbol of switch, we find that at ¢ = 0~, the switch is closed and ¢t = 0t, it is
open. Att = 0 , the circuit has reached steady state so that the equivalent circuit is as shown in

Fig.4.29(a). .
i(07)=— =2A
6
v(07) =12V
Therefore, we have i(07) =14(07)
=2A

v(0T) =v(07) =12V

(b) For t > 0T, we have the equivalent circuit as shown in Fig.4.29(b).

— o o
ic(0)
i07) l 60 40 6Q 4Q
12V <+> 12v (f) i)
_ . N .
v (0) v Q100 ”T 104F
Figure 4.29(a) Figure 4.29(b)

Applying KVL anticlockwise to the mesh on the right, we get
or,(t) —o(t) +10i(t) =0
Putting t = 07, we get
vr,(07) —v(07) +10i(07) =0
= v,(07)—12+10x2=0
= v, (01) = -8V
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The voltage across the inductor is given by

di
= L—
VL= S
di(0T)
+) — L
= UL(O ) di
di(0T) 1 n
> o — g0
1

" 10

Similarly, the current through the capacitor is

dv

i

=0

or dv(07)  ic(0T)  —i(0T)
a  c  C
-2
=——" — =-0.2x10%V/sec
10 x 106

(c) As t approaches infinity, the switch is open and the circuit
has attained steady state. The equivalent circuit at ¢ = oo is
shown in Fig.4.29(c).

i(00) =0
v(c0) =0

DNV 4.14

(—8) = —0.8A/sec

§69

4Q
()
+
v ()

s

Figure 4.29(c)

Refer the circuit shown in Fig.4.30. Find the following:

(a) v(0") and i(0) 3Q 0.25H
(0%) 0+ —\VWWW\—TT0 0
dv (0 di(0 —
(b) o and 7 - X

(c) v(oo) and i(c0) <f> 40u(-HV 0.1F ==v

50 4u(,)G>

Figure 4.30

SOLUTION

From the definition of step function,

u(t):{ 1,t>0

0,t<0
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From Fig.4.31(a), u(t) = 0att =0".

Similarly, wu(—t)= { (1)’ :Itl z 8
1,t<0
or u(—t) = { 0. 1> 0

From Fig.4.31(b), we find that u(—t) = 1, att = 0".

u(?)
=0-
[:0+\ 1 1 /t
t=0*
=0 s
\d .y 0 > !
Figure 4.31(0) Figure 4.31(b)

Due to the presence of u(—t) and u(t) in the circuit of Fig.4.30, the circuit is an implicit
switching circuit. We use the word implicit since there are no conventional switches in the circuit

of Fig.4.30.

The equivalent circuit at ¢ = 0~ is shown in Fig.4.31(c). Please note that at £ = 0™, the
independent current source is open because u(t) = 0 at t = 0~ and the circuit is in steady state.

30 i(07)

—AAMA—C—0
L.

w(©) v@)
s

l Current

5Q source

T (open)

Figure 4.31(c)
40
i(07) = —— =5A
0 =375
v(07) =5i(07) =25V
Therefore i(07) =4(07) = 5A
v(0T) =v(07) =25V

(b) Fort > 0%, u(—t) = 0. This implies that the independent voltage source is zero and hence
is represented by a short circuit in the circuit shown in Fig.4.31(d).
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Voltage Q
source
(short) O

.
+ 5Q
V== 0.IF

OX

Figure 4.31(d)
Applying KVL at node a, we get

dv v
4+i=cZ 42
+ 1 PR + 5
Att =0T, We get
’ dv(0T)  w(0T)
4+i(0M)=C
+i(07) dt 5
dv(0T) 25
= 44+5=01——F+ —
+ dt + )
dv(0F
= UElt ) =40V /sec
Applying KVL to the left—-mesh, we get
di
31+ 0.25— =0
v+ I +v
Evaluating at t = 0, we get
di(0"
3i(0h) + 0.25% +0(0h) =0
di(0T)
= 3x540.25 dl +25=0
di(0T —40
= Zilt ) =5 = —160A/ sec

4

(c) As t approaches infinity, again the circuit is in steady state. The equivalent circuit at ¢ = oo

is shown in Fig.4.31(e).

O

30 @,
MVW——Cc—o0 l
Voltage § +
source V(c0) 5Q
(short) @ T_
Figure 4.31(e)
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Using the principle of current divider, we get
i(00) = — <4 . 5) — _2.5A
3+5
v(o0) = (i(c0) +4)5
=(-254+4)5
=7.5V

EXAMPLE ENE

Refer the circuit shown in Fig.4.32. Find the following:
1H

T —

(a) i(0%) and v(0T) l.l

di(0T)  dv(0T) "
(b) = — and = M”G) Q —=+F v S50

(¢) i(o00) and v(oc0)

Figure 4.32
SOLUTION

Here the function u/(t) behaves like a switch. Mathematically,

u(t):{ 1,t>0

0,t<0

The above expression means that the switch represented by «(t) is open for ¢ < 0 and remains
closed for ¢t > 0. Hence, the circuit diagram of Fig.4.32 may be redrawn as shown in Fig.4.33(a).

! |

Figure 4.33(a)

For ¢ < 0, the circuit is not active because switch is in open state, This implies that all the
initial conditions are zero.

That is, ir,(07)=0and vc(07) =0
fort > 0T, the equivalent circuit is as shown in Fig.4.33(b).
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5A (D 50 T

Figure 4.33(b)

From the circuit diagram of Fig.4.33(b), we find that
vC

5

7=

Att =0T, we get
O ve(0) _ ve(07) _0_ 0A
i(07) 5 5 5

Also v =151,

Evaluating at t = 0, we get
v(07) = 15i5,(07)
=15i(07) =15x0=0V
(b) The equivalent circuit at ¢ = 0% is shown in Fig.4.33(c).
We find from Fig.4.33(c) that

ic(0T) =5A
N UL(O )_
O
i .(0%)
5A G) 50 ‘ e 15Q
Figure 4.33(c)
From Fig.4.33(b), we can write
v = bi
dve di
~ dt - Cdt
Multiplying both sides by C', we get
dve di
C—= =5C—
dt dt
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= ic = 5C—

Putting ¢t = 0T, we get

di(0T) 1
= —is(0"
i~ 5ce0)
_ X 5
i
5(1)
=4A/sec
Also v = 157,
N dv 15diL
dt " dt
dv diy,
— =15]1x —
~ di [ a7 }
= % = 15vy,
Att =0T, we find that
d +
= vil(t) ) = 15v5,(07)
From Fig.4.33(b), we find that v7,(07) = 0
dv(0T
Hence, v(07) =15x0
dt
=0V/sec

SNV 4.16
In the circuit shown in Fig. 4.34, steady state is reached with switch K open. The switch is closed
att = 0.

diq disy
Determine: i1, 49, — and —= at ¢ = 0"
L2 T dt
t=0
K
O
5Q
ANNVN\— ;
14 L 2
10Q2 10Q
+
@
_‘, 1uF 2H
Figure 4.34
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SOLUTION

Att = 0, switch K is open and at t = 07, itis closed. Att = 0, the circuit is in steady state
and appears as shown in Fig.4.35(a).

20
07 =
200 = 1513
Hence, ve(07) =10i2(0) =10 x 1.33 = 13.3V

=1.33A

Since current through an inductor cannot change instantaneously, i2(0") = i2(07) = 1.33 A.
Also, vc<0+) = vc(()*) = 13.3V.
The equivalent circuit at £ = 07 is as shown in Fig.4.35(b).

20—-13.3 6.7
1(0T) = ——= = —— =0.67A
71(07) 10 10
5Q K
1(0) H(0) - i1(0%) i5(0%)
10Q2 10Q 10Q
20V <+> 20V <+>
' 1.33A
V(0 | 13.3V .
Figure 4.35(a) Figure 4.35(b)
For t > 0, the circuit is as shown in Fig.4.35(c).
Writing KVL clockwise for the left-mesh,
we get K o
t h I
1
1021 + —= /il(T)dT =20 10Q
C 10Q
0+
w (D)
Differentiating with respect to t, we get
diy 1 1uF H
10— 4+ =i1 =0
i + C’L1 T
Putting t = 07, we get
Figure 4.35(c)
10di1(0+) n 1, (0F) =0 N
—_— _Z pr—
dt c'!
di (0T) -1 .
= 07) = —0.67 x 105A
s~ T0xixi0s ) /sec
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Writing KVL equation to the path made of 20V — K — 102 — 2H, we get

2dig
107 =20
29 + I
Att = 0T, the above equation becomes
, 2diz(0T)
10i5(07) + /22 =20
2(07) + —5
2dis (0T
- mx133+—l%—2:20
dig(0F
= % =3.35A/sec
AWV 4.17

Refer the citcuit shown in Fig.4.36. The switch K is closed at ¢ = 0. Find:

(a) vy andvp att =0T

R,=10Q

t=0
K
O
+
10V —

(b) v andwg att = oo

dvy
© E

d2vq

dt?

d
and 22 att = 0t
dt

(d) att =0+

AA'A%

R,=10Q

2mH

i
¥

SOLUTION

Figure 4.36

(a) The circuit symbol for switch conveys that at # = 0~, the switch is open and ¢ = 0, it is
closed. Att = 07, since the switch is open, the circuit is not activated. This implies that
all initial conditions are zero. Hence, at ¢ = 0%, inductor is open and capactor is short.

Fig 4.37(a) shows the equivalent circuit at # = 0.
K 10Q2

—Cc—0—— " \VVWA
\

n o
ov(

i»(0")

10Q

(U }' )
v,(0)

v,(0")

Figure 4.37(a)
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) 10

v1(07) =0, i(0%) =0

1A

Applying KVL to the path, 10V source — K — 102 — 102 — 2mH, we get
—10 +10i1(07) +v1(07) +v2(0T) =0
= —10+10+0+wv2(07) =0
= v2(07) =0
(b) Att = oo, switch K remains closed and circuit is in steady state. Under steady state

conditions, capacitor C' is open and inductor L is short. Fig. 4.37(b) shows the equivalent
circuit at ¢ = o0o.

) = = 0.5A
2(00) = 15770
11(00) =0
v1(00) = 0.5 x 10 =5V
v3(c0) =0
K 10Q2
C O AVAYAVAY,
A il(oo) T i2(°°)
v, (%) < 10Q
(o]
+
w @
o
V,(00)
Figure 4.37(b)
(c) Fort > 07, the circuit is as shown in Fig. 4.37(c).
K 10Q
——C——O0—=—A\A\VWV
! ‘ Il [2 1
10Q vy
+
10V<_> ——4uF I S
2mH
Uy
Figure 4.37(c)
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t

ig = - /UQ(T)dT _ul)

L
o+

Differentiating with respect to ¢, we get

Vg 1 duv;

L Ry dt
Evaluating at t = 0 we get

dvi(0T) Ry

_ - +
a5,

d +
= % =0V /sec

Applying KVL clockwise to the path 10 V source — K — 102 — 4uF, we get

i
1
104100+ / [i(7) — ia(7)]dr = 0
0+
Differentiating with respect to t, we get
di 1

A PR
Odt-l-C[Z 7,2] 0

Evaluating at t = 0, we get

di(0%) _ip(0F) —i(07)

d C % 10
0—1 o i(0F) =4y (0T) +dp(0T) ]
i — =140
—6
10 x 4 x 10 [ _ 1A J
= —25000A / sec

Applying KVL clockwise to the path 10 V source — K — 102 — 102 — 2 mH,

we get

—104 102 + 10i0 +v2 =0
= 10z 4+ v1 +v2 =10

Differentiating with respect to t, we get

o | dvr dvo

a T 7"
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Att =0T, we get

di(0T) N dvi(07) N dva(07)

10 —0
dt dt dt
dva (0
= 10(—25000) + 0 + Mf )
d +
= v2(07) =25 x 10*V/sec

dt

(d) From part (c), we have
t

1
z/UQ(’T)dT = %

0+
Differentiating with respect to t twice, we get
1 dUQ _ 1 dQUl
Ldt 10 dt?
Att =0T, we get
1dva(07) 1 d?v(07)
L dt 10 di?
d?v1(0F)
dt?

Hence, =125 x 107V / sec?

S NVIX= 4.18

Refer the network shown in Fig. 4.38. Switch K is changed from a to b at ¢ = 0 (a steady state

having been established at position a).

Figure 4.38

Show thatatt = 0.
-V

=, ) :O
RitRat Ry 7

11 =12
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SOLUTION

The symbol for switch indicates that at # = 0, it is in position @ and at t = 0, it is in position
b. The circuit is in steady state at ¢t = 0~. Fig 4.39(a) refers to the equivalent circuit at t = 0.
Please remember that at steady state C' is open and L is short.

ir,(07) =0, i7,(07) =0, ve,(07) =0, ve,(07)=0
Applying KVL clockwise to the left-mesh, we get

—V +ve,(07)+0x Re+0=0
= ves (07) =V volts.

a s
C\ +Uc3(0 z R, iLz(O_)
L o K0) L
\ i,(07) q
_ (U7 N v Cz(o_)

Since current in an inductor and voltage across a capacitor cannot change instantaneously, the
equivalent circuit at ¢ = 0% is as shown in Fig. 4.39(b).

Figure 4.39(a)

v C}(O*) =V R
2
X @ AW
b iz, (0
Figure 4.39(b)

i1(0") = iy(0™) since iz, (07) =0
i3(0") = 0 since i7,(017) =0

Applying KVL to the path vc,(01) — Ry — R3 — Ry — K we get,

V + Roi1(07) + R3in(0") + Ry (07) = 0
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Since i1(0F) = i3(0™), the above equation becomes
-V = [Rl + Ry + Rg] i1(0+)

-V
Hence, i1(0%) =i2(0%) = Ri+ Ry + R3A

DNV, 4.19
Refer the circuit shown in Fig. 4.40. The switch K is closed at £ = 0.

dip (0T) dio(0T)
I and (b) —u

K

Find (a)

(o)
t=0 .
R R
R R
<+> v (t) =V sin wt i
_ n *

UCT C |
Figure 4.40
SOLUTION o—O -
. + i (0
The circuit symbol for the switch shows that at H0 w 20D ‘

t = 0, itis open and at t = 0T, it is closed.
Hence, at t = 0, the circuit is not activated. vS(O*)=OI
This implies that all initial conditions are zero.
That is, v(07) = 0and i7,(07) = i2(07) = 0.
The equivalent circuitat ¢ = 0" keeping in mind T
that 7)C(O+) = ’()C(O_) and i[,(0+) = 'iL<0_) is
as shown in Fig. 4.41 (a).

Figure 4.41(a)

i1(07) =0 and i2(0") = 0.

Figure. 4.41(b) shows the circuit diagram for ¢ > 0.

t
1
V,sinwt = i1 R+ Vol /il(T)dT

0+
Differentiating with respect to ¢, we get
div i1
Vowcoswt = R— + —
? @ C
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Att =0T, we get

di1(0+) i1(0+) K

Vow =R c——o0
“ @ T C , 5
di (07) waA ' )
= i / sec P R

. , dip n
Also, Vosinwt =ioR + LE V()= 7V, sin wt(_)

C L

Evaluating at t = 0, we get

. dis(0T)
0=1iy(0")R+ L——2
i2(0")R + ar
dio (0T
= 72;? ):0A/ sec
EXAMPLE e

Figure 4.41(b)

In the network of the Fig. 4.42, the switch K is opened at £ = 0 after the network has attained

steady state with the switch closed.
(a) Find the expression for vy att = 0t.

(b) If the parameters are adjusted such that i(0") = 1, and

di(0T)

= —1, what is the value of

dt
d -
the derivative of the voltage across the switch at¢ = 0%, (%(0‘”) ?
+ Y ‘
PR
o AYAYAAY
=0 i i
R, C
v C) AN —] ] L
Figure 4.42
K R,
SOLUTION o—o AAMA
Att = 07, switch is in the closed state and at i) i
t =0T, itis open. Also att = 0, the circuit
is in steady state. The equivalent circuit at v <t> I
t = 0~ is as shown in Fig. 4.43(a).
v
i(07)=—=andvc(07) =0
Ry
Figure 4.43(a)
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For t > 0T, the equivalent circuit is as shown in Fig. 4.43(b).

From Fig. 4.43 (b),

t
1
v = Ryt + 5 /i(T)dT
o+
= v = Rii 4+ ve(t)

Att = 0%, v (01) = Ri(0F) + ve(0H)

\%
= 7)[\'(0+) =Ri— + ’UC(O_)
Ry
=Ry R12volts
+ - R,
o ¥ o AN
R, C

Figure 4.43(b)

(b)

t
1
v = Ryi+ el /i(T)dT
o+
dvg  _ di 7
a ~Matc

=

Evaluating at t = 07, we get

dvre(0%)  _ di(0F)  i(0T)
a Mo te
1
= Rl X (—1) —+ 6
1
=G — Ry volts/ sec
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Reinforcement Problems

R.P 4.1
Refer the circuit shown in Fig RP4.1(a). If the switch is closed at ¢ = 0, find the value of
d%ir, (0"
M att =07 .
dt?
2mH
IR
18 A
10Q § / § 50Q2
|1
+ 1=
1
%mF
Figure R.P.4.1(a)
SOLUTION

The circuit at ¢ = 0~ is as shown in Fig RP 4.1(b).

Since current through an inductor and voltage across a capacitor cannot change
instantaneously, it implies that i7,(0") = 18A and vo(0T) = —180 V.

The circuit for ¢ > 0% is as shown in Fig. RP 4.1 (c).

i(07) = 18A 2mH i
18 A
10Q § / 18A § 50Q 10Q § / §SOQ
1l
o i
£ Lo
Ve (07) =180V 53 MF
Figure R.P.4.1(b) Figure R.P.4.1(c)

Referring Fig RP 4.1 (c), we can write

t
0
2 x 10—3% + 60, + 288 x 103/iL(t)dt =0 (4.9)

0+
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Att =0T, we get

dir(07)  —60 x 18 + 180
dt  2x10°3
= —450 x 10* A/ sec

Differentiating equation (4.9) with respect to ¢, we get

d?ig, dir, ,
S H 00— 4288 x 10%, = 0

2x10™
Att =0T, we get

d?i,(0%)  60(450)10% — 288 x 10%(18)
ez 2% 103
=1.0908 x 10 A/ sec?

42

d2v0(0+) d d3U0<0+)

For the circuit shown in Fig. RP 4.2, determine an
g dt? dt3

24Q 2mH
MV U0
— iL
1= J.C
I o
1
F
e
2 u(?)
Figure R.P.4.2
SOLUTION
Given .
. 2,t>0
i(t) = 2u(t) = { 0.1<0"
Hence,att = 0", vc(07) =0andi;,(07) =0
For t > 07, the circuit equations are
1 dvc(t) 1 /
— - t)dt = —2 4.10
o1 Ta)vrW (4.10)
0
1 dvc(t)
— ir(t) = —2 4.11
= 61 d +ir(t) 4.11)
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[Note : ic + 17, = —2 because of the capacitor polarity]
Att = 07, equation (4.10) gives
1 dvc(0F)
— 2O ) in(0h) = —2
o1 dt +ir,(07)

Since, ir,(01) = ir,(07) = 0, we get

1 dvc(0T)
—_ e = _9
64 dt 0
d +
= % = —128 volts/ sec

Differentiating equation (4.10) with respect to ¢t we get

1 dQ’UC'(t) 1
1 dveld) 1o 4.12
61 QUL( ) 4.12)
t
- 1
Also, ”024”" =3 / ondt =iy (4.13)
0+

Att =0T, we get

Since v (07) = 0 and i7,(07) = 0, we get vr,(0F) = 0.
Att = 0T, equation (4.12) becomes

1 d?ve(0F) 1 N
6_4—dt2 + 5’1)]’1(0 ) = 0
1 d®vc(0%) 1
— = 2+ - x0=0
~ 61 a2 2~
d?ve(07)
— = 20
= dt?

Differentiating equation (4.12) with respect to ¢t we get

1 &Pve 1dog,

Bt C A Wit CR 4.14
64 dt3 2 dt (4.14)

=

Differentiating equation (4.13) with respect to ¢, we get

dve  dug,

T
a1,

24 2
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Att =0T, we get
dvc(0F)  dvr(0F)

R i - dt — %UL(O_‘—)
—128 — %ﬁﬂ
N 24 -
= %toﬂ = —128 volts/ sec

Att = 0T, equation (4.14) becomes
1 d3ve(07)  1du(0F)

64 di® 2 dar
d3ve (0t
= % = 4096 volts/ sec
R.P 4.3

In the network of Fig RP 4.3 (a), switch K is closed att = 0. At¢ = 0 all the capacitor voltages
and all the inductor currents are zero. Three node-to-datum voltages are identified as vy, vo and
v3. Find att = 0F:

(i) vy, v9 and vy

... dvy dv dvs
21 22 apd 2
W@ ™

K?g R,
o— VWV
v (") C> C, =

Figure R.P.4.3(q)

SOLUTION

The network at ¢ = 0 is as shown in Fig RP-4.3 (b).
Since veo and 77, cannot change instantaneously, we have from the network shown in
Fig. RP-4.3 (b),
v1(07) =
v(07) =
v3(07) =

o O O
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+
v(0") <_>

Figure R.P.4.3(b)

Fort > 0, the circuit equations are

(4.15)

0+ )
From Fig. RP-4.3 (b), we can write
) v(0T)
i1(01) = ,
i1(07) R
+ +
. + _’1)1(0 )_U2<0 )
7’2<0 )_ R2
and i3(07) =0

Differentiating equation (4.15) with respect to ¢, we get

dve, i1 dvg, o an dve, 2_3
dt _017 dt _CQ dt _03
Att = 0T, the above equations give

dvi(07)  41(0%)  w(07)
a  C1 RO

dvp(07)  din(07) w1 (0T) —wa(0) 0
dt - Cy - RyCy -

dvz(0T)  di3(07)

and a0 0
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R.P 4.4
For the network shown in Fig RP 4.4 (a) with switch K open, a steady-state is reached. The circuit
paprameters are R; = 1082, Ry = 2012, R3 = 2092, L. =1 H and C = 1uF. Take V = 100

volts. The switch is closed at t = 0. x é(
=0
(a) Write the integro-differential R
equation after the switch is NV
closed. 2 ‘
R
(b) Find the voltage V,, across C' be- 2 §R3
fore the switch is closed and give .
. . V _— I
its polarity. p— ‘
(c) Find iy and i att = 0. . =
. diq dio
d) Find — and — att = 0.
(d) Fin 7 an 7 a
What is the value of i1
(e) at is the value o ’ at Figure R.P.4.4(q)
t = 00?
SOLUTION
The switch is in open state at¢ = 07. The network att = 07 is as shown in Fig RP 4.4 (b).
R,
NV
(0]
Ry R
0
an 7(07) * 3
V —
Ve(07)
Figure R.P.4.4(b)
1% 100 10
W0 ) =———=—7-=—A
0= T %0 3
10 200
VC(Oi) = Z'l(Oi)RQ = E x 20 = T volts
Note that L is short and C' is open under steady-state condition.
For t > 0% (switch in closed state),
di
we have 20i; + % =100 (4.16)
£
and 20iy + 106 / iadt =100 (4.17)

0+
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Also i1(017) =41(07) = ) A
200
and Ve (0) =Ve(07) = = Volts
From equation (4.16) att = 0,
. + 1
we have dir (07) =100 — 20 x 10
dt 3
100
= — A/sec
3
From equation (4.17), att = 01, we have
1 200 5
i2(0T) = = |100 - —| == A
2007) = 55 [ 3 ] 3
Differentiating equation (4.17), we get
20— 4+ 102 =0 4.18
g T 10702 (4.18)
From equation (4.18) att = 0", we get
20dio (0T
20dix(07) 105i5(0%) =0
dt
dis(07)  —10%x 2
N ia(07) X3
dt 20
—106
= A
B / sec
Att = oo,
; 100
1 (OO) = 2—0 =5A
diq
- -0
ar )
45
d%i1(01)

For the network shown in Fig RP 4.5 (a), find 72

The switch K is closed at ¢ = 0.

K Rl R2
—o>§c ANV AN

=0
XCENONE JOR

Figure R.P.4.5(a)
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SOLUTION

Att =0, wehave vo(07) = 0and 75(0") = i5,(0") = 0. Because of the switching property
of L and C, we have vo(0%) = 0 and i2(07) = 0. The network at ¢ = 0T is as shown in

Fig RP 4.5 (b).

Figure R.P.4.5(b)

Referring Fig RP 4.5 (b), we find that

v(07)

i1(0+) - Ry

The circuit equations for ¢ > 0" are

t
1
Ry + 5 /(71 — 'ig)dt = 7)(t)
0+

t
1 dio
d ) — b9 — 1 L— =
an Roig + C /(72 71)dt+ a 0
o+
e —
ve(t)
Att = 0T, equation (4.20) becomes
dio (0T
Ryiz(0%) +vc(07) + L Z2(EH ! -0
dia(0)
=0
- dt
Differentiating equation (4.19), we get
diq 1 . N dv(t)
frg el ="y
Letting + = 0% in equation (4.22), we get
diy(0Y) 1 . , dv(0)
R — I 0+ _ 0+ —
1 Jt + C {7’1( ) 12( )} di
N di1(0F) 1 f{dv(0) w(0F)
dt a Ry dt R C

(4.19)

(4.20)

4.21)

(4.22)

(4.23)
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Differentiating equation (4.22) gives
Rld%l N 1 [diy dis] _ d%gt)
dt dt dt

a2 ¢
Letting t = 0™, we get

Rd2i1(0+) 1 [di (0)  diz(07)] _ d*0(07)
e c| dt |~ d?
d%i1(01) 1 dip(0F)  d?v(0%)
- M= =" d?
d%i(0F) 1 1 dv(0T) 1 d?v(01)
=— — — ot - 7
- a2 310{31 i w0y T
RP RS

Determine v, (0~) and v,(0") for the network shown in Fig RP 4.6 (a). Assume that the switch
isclosed att = 0.

10Q
AN
10Q v 20Q

| +

sV — L l’i
- 10Q
Figure R.P.4.6(0)
SOLUTION
Since L is short for DC at steady state, the net-
work att = 0~ is as shownin Fig. RP 4.6 (b). 10Q
Applying KCL at junction a, we get
_ _ - 10€2 v (07)  20Q
va(07) =5 wa(07) —w(07) _ ANN—1—AM—7,(0)
10 20 l
wo-)
Since v;,(07) = 0, we get N
0,(07) =5 0, (07) =0 0 SV — I
10 20 ) 1oe
0.5 10
= w(07) = = — volt
ve(07) = G005 — 3 YOI

Figure R.P.4.6(b)
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_ . v, (07) 5
Al 07)=ir(0") = —
50, ir(07) =ir(07) 50t 10
2
—ZA
3
Fort > 0T, we can write
Vg —D Vg Vg — Uy _
0 Tt Y
Vp— Vg  UVp—DH
d —
o 0 10 Tie=0
Simplifying att = 0T, we get
1 1 1
h +\ _ ) =
70a(07) = 5gu(07) =3
1 3 —1
d — —1,(07) + =1, (0") = —
an 207)'( )+ 20%( ) 6

40

Solving we get, v,(07) = ST 1.905 volts

Exercise problems

E.P 4.1
Refer the circuit shown in Fig. E.P. 4.1 Switch K is closed at t = 0.
di(0T) d%i(0%)
Find i(07), .
ind §(07) dt dt?
K R=500
—O AAYAAY
=0
— —— C=2uF
= () .
Figure E.P.4.1
di(ot) d%i(0t)

Ans: i(0T) = 0.2A, = —2 x103A/ sec,

dt

Sz = 20 X 10°A/sec”
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di
Refer the circuit shown in Fig. E.P. 4.2. Switch K is closed at ¢ = 0. Find the values of ¢, d—; and
&2 '

2
@attzof

K
=100Q
‘o) AVAVAYAY,

t=0
oV — L=1H
Figure E.P.4.2
di(0" d%i(ot
Ans: i(0) =0, Zilt ) =10 A/ sec, % — —1000 A/ sec?

E.P 4.3

Refering to the circuit shown in Fig. E.P. 4.3, switch is changed from position 1 to position 2 at
. . s . di %
t = 0. The circuit has attained steady state before switching. Determine i, — and — att = 0.

dt dt?
l 1
20Q
<—vp£0_ WAVAYAY,
=0
+ 2
a0V ()

@ ——IuF
1H

Figure E.P.4.3
d?i(0T)
dt?

di(ot)

Ans: i(0T) =0, at

= 800 A/ sec?

= —40 A/ sec,
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E.P 4.4

In the network shown in Fig. E.P.4.4, the initial voltage on C is V, and on C is V}, such that

d d
v1(07) = V,, and v2(0~) = V},. Find the values of % and % att =07,

t=0
R
o AA'A% o 0
+ K +
v, = C = G, v,
o 0
Figure E.P.4.4
d'v1(0+) Vb - Va d'l)2(0+) Va — Vb
A . = V g V
T GR /% T4 GoR V/%°
E.P 4.5

2

In the network shown in Fig E.P. 4.5, switch K is closed at ¢ = 0 with zero capacitor voltage and
. dw
zero inductor current. Find

df22 att =0T,

K R,
O—\WW\
1=0 +
v, <+> —Ye

Figure E.P.4.5

d?v,(01) RoV, 9
Ans: = A%
ns 22 R.L.Ch / sec
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| EP K
d“

In the network shown in Fig. E.P. 4.6, switch K is closed at t = 0. Find —;1 att =07,

dt
o

t=0

+0O

Y

Figure E.P.4.6

d2’01 (0+)
dt?

a7

Ans: = 0V/sec?

di(0F
The switch in Fig. E.P. 4.7 has been closed for a long time. It is open at t = 0. Find %
do(0F ’
v((it )z(oo) and v(00).
4Q 0.25H
AYAVA'AY
—_—
1
2Q
w +
12V<_> 0.IF=——nv
K
=0 N
Figure E.P.4.7
di(0T dv(0F
Ans: %t) = 0A/ sec, %) = 20A/sec, i(oo0) = 0A, v(oco) =12V
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In the circuit of Fig E.P. 4.8, calculate i7,(07),

diL (O+) d?)c (O+)

, Vr(00), ve(0o) and if,(00).

e 7 dt
40
VW :
/"
| +
+ 7 F== l)C
3u(t)AG> UR§ 2Q - %0.6H
_ C+> 20V
Figure E.P.4.8
dig, (0"
Ans: ir,(07) =0 A, % =0A/sec
dvc (0T
% =2V/sec, wvgr(oo) =4V, vec(oco) = —20V, irp(oco) = 1A
E.P 4.9
Refer the circuit shown in Fig. E.P. 4.9. Assume that the switch was closed for a long time for
dir, (0"
t < 0. Find ZLcEt ) andir,(07). Take v(0T) =8 V.
8Q
AAAAY
ZIHIF 8mH
(] 00
+
SA G) %t: 0 <i>8\’ 20<
O —
Figure E.P.4.9
dig (0"
Ans: i (0F) =4 A, % —0A/sec
E.P 4.10
Refer the network shown in Fig. E.P. 4.10. A steady state is reached with the switch K closed and

dva(07T)

with i = 10A. Att = 0, switch K is opened. Find v5(0") and o
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O—\VW—
a o
|1 !
1
i=10A G) §Ra §RC L, v,
o
Figure E.P.4.10
Ans: ot)=o0 = v/ sec.
ns: v2(07) ’ dt Co(Rs + Rp)(Ro + R.) fe

E.P 4.11

Refer the network shown in Fig. E.P. 4.11. The network is in steady state with switch K closed.
dvy, (0
The switch is opened at ¢ = 0. Find v;,(0") and M

dt
Ca
1]
I + Ve _
—VVW—————WW o

Figure E.P.4.11
Vo R
Ans: 'Uk(0+) = m\ﬂ)lts,
a c
dvk(0+) . Va(Ca + Cb)
dt

p— VvV
(Ra T R+ Ro)(CaCa+ CoCa + CoCa) U/ €€
4.12

- _d%i (0%)
Refer the network shown in Fig. E.P. 4.12. Find o
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K R,
o ANV
t=0

v(#) = 10cost <+ @

Figure E.P.4.12

d?i;(0t) 1 10 2
Ans: T = R—a |:—]_0 + m] A/ sec
4.13
diy (0)

Refer the circuit shown in Fig. E.P. 4.13. Find . Assume that the circuit has attained

K R, Ry
o>§c ANV AN

=C, @ L,

steady state att = 0.

(#) = 10sin? <+>

Figure E.P.4.13
di;(0T) 10
Ans: ———— = —A
ns it Ra / sec
E.P 4.14

Refer the network shown in Fig. E.P.4.14. The circuit reaches steady state with switch K closed.
dv(07) and d?vo(07)

At a new reference time, t = 0, the switch K is opened. Find

2
o dt dt
30, QR
O—AAWVW
+
L, Yy
10V <+> C,—= -
= +
Rb Vy

Figure E.P.4.14
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_dvi(0T) —10 d?vy(01) —10R,

A = =
T T Ca(Rat Bp) V5 T A T LaCa(Rat Ry

E.P 4.15

V/sec?

The switch shown in Fig. E.P. 4.15 has been open for a long time before closing at t = 0. Find:

720(0_), iL(O_) 7:0(0+), 7:[,(0+), io(oo), 7:]',(00) and Q)L(OO).

10Q 400 200
—" VW VW MW\

12V <+> 120Q2 0 100mH VL
— t =

Figure E.P.4.15

+ 0

Ans: i(07) =0, ir(07) = 160mA, ip(0") =65mA, ir(0T) = 160mA,
10(00) = 225mA, iz, (00) = 0,v(0c0) =0

E.P 4.16

The switch shown in Fig. E.P. 4.16 has been closed for a long time before opeing at ¢ = 0.
Find: 1(07), i2(07), i1(07), i2(0T). Explain why io(0~) # io(0T).

=0
15kQ 15kQ
VWV o MWW\

i i
: i
ov{ 15kQ 30mH

Figure E.P.4.16

Ans: i;(07) = i2(07) = 0.2mA,i2(0") = —i; (07) = —0.2mA

300



E.P 4.17
The switch in the circuit of Fig E.P.4.17 is closed at t = 0 after being open for a long time. Find:
(a) #1(07) and i(0")
(b) i1 (0") and i5(0*)
(c) Explain why 41 (07) = i1(07)
(d) Explain why i5(07) # io(0)

100pA
0.4uF
[

I
20kQ 5kQ 10kQ
AAAY VWV VN

- —>

+
10V 1=0 5kQ

Figure E.P.4.17

Ans: i1(07) =i2(07) = 0.2mA, i1(0T) = 0.2 mA, i2(07) = —0.2mA

Outcomes:

1. Analyze the transient behavior of RC and RL circuits.

2. Determine the transient response of second-order systems and understand the concepts of
under damped, over damped, and critically-damped circuits.

3. Explain transient phenomena and analyze the transient behavior of simple circuits.

4. Explain concepts such as steady-state response, transient response and total response as
they apply to electronic circuits;

5. Describe the transient behavior of simple RC and RL circuits;

6. Predict the transient response of generalized first-order systems from a knowledge of its initial
and final values;

7. Sketch increasing or decreasing exponential waveforms and identify key characteristics;

8. Describe the output of simple RC and RL circuits in response to a square-wave input;

9. Outline the transient behavior of various forms of second-order system.

Resources:

1. http://www.ee.ic.ac.uk/hp/staff/dmb/courses/ccts1/cctsl.htm

2. http://nptel.ac.in/courses/108105053/pdf/L-10(GDR)(ET)%20((EE)NPTEL).pdf
3. http://www.calvin.edu/~svleest/circuitExamples/TransientAnalysis/theory.htm
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