

Lesson Plan & Work-done Diary for AY:2024-25, Odd Semester

Cour	se with Code	: Basic Thermodynamics-BME304		Facult	y: Ravikumar	S	Semester & Section: III Sem ME				
Class No.	Date planned (DD/MM)	Topics to be covered	TLP Planned	Class No.	Date of Conduction (DD/MM)	Topics Covered	TLP Executed	Remarks if any deviation			
	MODULE-1										
1		Introduction and Review of fundamental concepts: Thermodynamic definition and scope, Microscopic and Macroscopic approaches. Characteristics of system boundary and control surface. Thermodynamic properties; definition and units, intensive, extensive properties, specific properties, pressure, specific volume	Chalk and talk					Self-study part in the syllabus, Hence, explained briefly and study materials supplied.			
2		Thermodynamic state, state point, state diagram, path and process, quasi-static process, cyclic and non-cyclic; processes; Thermodynamic equilibrium; definition, mechanical equilibrium; diathermic wall, thermal equilibrium, chemical equilibrium	Chalk and talk					Self-study part in the syllabus, Hence, explained briefly and study materials supplied.			
3		Zeroth law of thermodynamics, Temperature; concepts, scales, international fixed points and measurement of temperature.	Chalk and talk								
4		Constant volume gas thermometer, constant pressure gas thermometer, mercury in glass thermometer, thermocouples, electrical resistance thermometer	Chalk and talk								

5	Numerical on Zeroth Law of TD	Chalk and talk			
6	Numerical on Zeroth Law of TD	Chalk and talk			
7	Work and Heat: Mechanics, definition of work and its limitations. Thermodynamic definition of work; examples, sign convention.	Chalk and talk			
8	Displacement work; as a part of a system boundary, of a system boundary, expressions for displacement work in various processes through p-v diagrams.	Chalk and talk			
9	Shaft work; Electrical work. Other types of work. Heat; definition, units and sign convention. Problems	Chalk and talk			
10	Numericals on Work and Heat	Chalk and talk			
11	Numericals on Work and Heat	Chalk and talk			
12	Numericals on Work and Heat	Chalk and talk			

	MODULE-2								
13	First Law of Thermodynamics: Joules experiments, equivalence of heat and work.	Chalk and talk							
14	Statement of the First law of thermodynamics, extension of the First law to non - cyclic processes,	Chalk and talk							
15	energy, energy as a property, modes of energy, Problems.	Chalk and talk							
16	Numericals on First law of TD for non-cyclic processes.	Chalk and talk							
17	Numericals on First law of TD for non-cyclic processes.	Chalk and talk							
18	Extension of the First law to control volume ; steady flow energy equation (SFEE), Problems	Chalk and talk							
19	Numericals on SFEE	Chalk and talk							
20	Numericals on SFEE	Chalk and talk							

	MODULE-3								
	Second Law of Thermodynamics:	Chalk and							
21	Limitations of first law of	talk							
21	thermodynamics, Thermal reservoir,								
	heat engine and heat pump:								
	Schematic representation, efficiency	Chalk and							
22	and COP. Reversed heat engine.	talk							
	Kelvin - Planck statement of the								
	Second law of Thermodynamics								
	PMM I and PMM II, Clausius	Chalk and							
23	statement of Second law of	talk							
	Thermodynamics, Equivalence of the								
	two statements	G: 11 1							
24	Carnot cycle, Carnot principles.	Chalk and							
	Problems	talk							
25	Entropy: Clausius inequality,	Chalk and							
	Statement- proof.	talk							
26	Entropy- definition, a property,	Chalk and							
	change of entropy	talk							
2.7	entropy as a quantitative test for	Chalk and							
27	irreversibility, principle of increase in	talk							
	entropy	C1 11 1							
28	entropy as a coordinate. Problems	Chalk and							
20		talk							

	MODULE-4								
	Availability, Irreversibility and	Chalk and							
29	General Thermodynamic relations.	talk							
	Introduction, Availability (Exergy),								
	Unavailable energy								
	Relation between increase in	Chalk and							
	unavailable energy and increase in	talk							
30	entropy. Maximum work, maximum								
	useful work for a system and control								
	volume, irreversibility. Problems								
	Pure Substances: P-T and P-V	PPT and Chal							
31	diagrams, triple point and critical	& Talk							
	points								
	Sub-cooled liquid, saturated liquid,	PPT and Chal							
	mixture of saturated liquid and vapor,	& Talk							
32	saturated vapor and superheated								
	vapor states of pure substance with								
	water as example								
	Enthalpy of change of phase (Latent	PPT and Chal							
33	heat). Dryness fraction (quality), T-S	& Talk							
	and H-S diagrams								
	representation of various processes	PPT and Chal							
34	on these diagrams. Steam tables and	& Talk							
	its use. Throttling calorimeter,								
	separating and throttling calorimeter								
35	Numericals on Steam	PPT and Chal							
33		& Talk							
26	Numericals on Steam	PPT and Chal							
36		& Talk							

			M	ODULE-5		
37	Ideal gases: Ideal gas mixtures, Daltons law of partial pressures, Amagat's law of additive volumes,	PPT and Chal & Talk				
38	evaluation of properties of perfect and ideal gases, Air- Water mixtures and related properties	PPT and Chal & Talk				
39	Real gases – Introduction, Van-der Waal's Equation of state, Van-der Waal's constants in terms of critical properties,					
40	Beattie-Bridgeman equation, Law of corresponding states, compressibility factor	PPT and Chal & Talk				
41	compressibility chart. Difference between Ideal and real gases	PPT and Chal & Talk				
42	Thermodynamic relations: Maxwell's equations, TdS equation.	Chalk and Talk				
43	Ratio of Heat capacities and Energy equation, Joule-Kelvin effect, Clausius-Clapeyron equation	Chalk and Talk				
44 on war ds	Revision Classes	PPT and Chal & Talk				

	Activity	Planned	Actual	Remarks	
1	Theory Classes	46			
2	Assignments/ Quizzes/ Self-study	5			
3	Tutorials/ Extra classes	Will be decided on the need basis			
4	Internal Assessments	3			
5	ICT based Teaching (% of usage in Curriculum)	10 classes / 25%			
	Planning		Execution		
Faculty S	ignature:		Faculty Signature:		
HoD Sign	ature:		HoD Signature:		