
Module 1: Introduction

• What Operating Systems Do
• Computer-System Organization
• Computer-System Architecture
• Operating-System Structure
• Operating-System Operations
• Process Management
• Memory Management
• Storage Management
• Protection and Security
• Distributed Systems
• Special-Purpose Systems
• Computing Environments

Objectives

• To provide a grand tour of the major operating
systems components

• To provide coverage of basic computer system
organization

What is an Operating System?

• A program that acts as an intermediary
between a user of a computer and the
computer hardware.

• Operating system goals:
– Execute user programs and make solving user

problems easier.
– Make the computer system convenient to

use.

• Use the computer hardware in an
efficient manner.

Computer System Structure

• Computer system can be divided into four
components
– Hardware – provides basic computing resources

• CPU, memory, I/O devices

– Operating system
• Controls and coordinates use of hardware among various

applications and users

– Application programs – define the ways in which the
system resources are used to solve the computing
problems of the users
• Word processors, compilers, web browsers, database

systems, video games

– Users
• People, machines, other computers

Four Components of a Computer System

Operating System Definition

• OS is a resource allocator

– Manages all resources

– Decides between conflicting requests for
efficient and fair resource use

• OS is a control program

– Controls execution of programs to prevent
errors and improper use of the computer

Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an

operating system” is good approximation
– But varies wildly

• “The one program running at all times on the
computer” is the kernel. Everything else is
either a system program (ships with the
operating system) or an application program

Computer Startup

• bootstrap program is loaded at power-up or
reboot

– Typically stored in ROM or EEPROM, generally
known as firmware

– Initializates all aspects of system

– Loads operating system kernel and starts
execution

Computer System Organization

• Computer-system operation

– One or more CPUs, device controllers connect
through common bus providing access to shared
memory

– Concurrent execution of CPUs and devices
competing for memory cycles

Computer-System Operation

• I/O devices and the CPU can execute
concurrently.

• Each device controller is in charge of a particular
device type.

• Each device controller has a local buffer.
• CPU moves data from/to main memory to/from

local buffers
• I/O is from the device to local buffer of controller.
• Device controller informs CPU that it has finished

its operation by causing an interrupt.

Common Functions of Interrupts

• Interrupt transfers control to the interrupt service
routine generally, through the interrupt vector, which
contains the addresses of all the service routines.

• Interrupt architecture must save the address of the
interrupted instruction.

• Incoming interrupts are disabled while another
interrupt is being processed to prevent a lost interrupt.

• A trap is a software-generated interrupt caused either
by an error or a user request.

• An operating system is interrupt driven.

Interrupt Handling

• The operating system preserves the state of the
CPU by storing registers and the program counter.

• Determines which type of interrupt has occurred:

– polling

– vectored interrupt system

• Separate segments of code determine what
action should be taken for each type of interrupt

Interrupt Timeline

I/O Structure
• After I/O starts, control returns to user program only

upon I/O completion.
– Wait instruction idles the CPU until the next interrupt
– Wait loop (contention for memory access).
– At most one I/O request is outstanding at a time, no

simultaneous I/O processing.
• After I/O starts, control returns to user program without

waiting for I/O completion.
– System call – request to the operating system to allow user

to wait for I/O completion.
– Device-status table contains entry for each I/O device

indicating its type, address, and state.
– Operating system indexes into I/O device table to

determine device status and to modify table entry to
include interrupt.

Direct Memory Access Structure

• Used for high-speed I/O devices able to
transmit information at close to memory
speeds.

• Device controller transfers blocks of data from
buffer storage directly to main memory
without CPU intervention.

• Only on interrupt is generated per block,
rather than the one interrupt per byte.

Storage Structure

• Main memory – only large storage media that the
CPU can access directly.

• Secondary storage – extension of main memory
that provides large nonvolatile storage capacity.

• Magnetic disks – rigid metal or glass platters
covered with magnetic recording material
– Disk surface is logically divided into tracks, which are

subdivided into sectors.

– The disk controller determines the logical interaction
between the device and the computer.

Storage Hierarchy

• Storage systems organized in hierarchy.

– Speed

– Cost

– Volatility

• Caching – copying information into faster
storage system; main memory can be viewed
as a last cache for secondary storage.

Storage-Device Hierarchy

Caching

• Important principle, performed at many levels in a
computer (in hardware, operating system, software)

• Information in use copied from slower to faster storage
temporarily

• Faster storage (cache) checked first to determine if
information is there
– If it is, information used directly from the cache (fast)
– If not, data copied to cache and used there

• Cache smaller than storage being cached
– Cache management important design problem
– Cache size and replacement policy

Performance of Various Levels of Storage

• Movement between levels of storage
hierarchy can be explicit or implicit

Migration of Integer A from Disk to Register

• Multitasking environments must be careful to use most recent
value, not matter where it is stored in the storage hierarchy

• Multiprocessor environment must provide cache coherency in
hardware such that all CPUs have the most recent value in their
cache

• Distributed environment situation even more complex
– Several copies of a datum can exist
– Various solutions covered in Chapter 17

Operating System Structure
• Multiprogramming needed for efficiency

– Single user cannot keep CPU and I/O devices busy at all times

– Multiprogramming organizes jobs (code and data) so CPU always has one to
execute

– A subset of total jobs in system is kept in memory

– One job selected and run via job scheduling

– When it has to wait (for I/O for example), OS switches to another job

• Timesharing (multitasking) is logical extension in which CPU switches jobs so
frequently that users can interact with each job while it is running, creating
interactive computing

– Response time should be < 1 second

– Each user has at least one program executing in memory process

– If several jobs ready to run at the same time  CPU scheduling

– If processes don’t fit in memory, swapping moves them in and out to run

– Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Operating-System Operations

• Interrupt driven by hardware
• Software error or request creates exception or trap

– Division by zero, request for operating system service
• Other process problems include infinite loop, processes

modifying each other or the operating system
• Dual-mode operation allows OS to protect itself and

other system components
– User mode and kernel mode
– Mode bit provided by hardware

• Provides ability to distinguish when system is running user code or
kernel code

• Some instructions designated as privileged, only executable in
kernel mode

• System call changes mode to kernel, return from call resets it to
user

Transition from User to Kernel Mode

• Timer to prevent infinite loop / process
hogging resources

– Set interrupt after specific period

– Operating system decrements counter

– When counter zero generate an interrupt

– Set up before scheduling process to regain control
or terminate program that exceeds allotted time

Process Management
• A process is a program in execution. It is a unit of work within the system. Program

is a passive entity, process is an active entity.

• Process needs resources to accomplish its task

– CPU, memory, I/O, files

– Initialization data

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying location of next
instruction to execute

– Process executes instructions sequentially, one at a time, until completion

• Multi-threaded process has one program counter per thread

• Typically system has many processes, some user, some operating system running
concurrently on one or more CPUs

– Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

The operating system is responsible for the following
activities in connection with process management:

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

• Providing mechanisms for deadlock handling

Memory Management

• All data in memory before and after processing

• All instructions in memory in order to execute

• Memory management determines what is in memory
when
– Optimizing CPU utilization and computer response to users

• Memory management activities
– Keeping track of which parts of memory are currently

being used and by whom

– Deciding which processes (or parts thereof) and data to
move into and out of memory

– Allocating and deallocating memory space as needed

Storage Management
• OS provides uniform, logical view of information

storage
– Abstracts physical properties to logical storage unit - file
– Each medium is controlled by device (i.e., disk drive, tape

drive)
• Varying properties include access speed, capacity, data-transfer

rate, access method (sequential or random)

• File-System management
– Files usually organized into directories
– Access control on most systems to determine who can

access what
– OS activities include

• Creating and deleting files and directories
• Primitives to manipulate files and dirs
• Mapping files onto secondary storage
• Backup files onto stable (non-volatile) storage media

Mass-Storage Management

• Usually disks used to store data that does not fit in main memory or data that must be kept
for a “long” period of time.

• Proper management is of central importance

• Entire speed of computer operation hinges on disk subsystem and its algorithms

• OS activities

– Free-space management

– Storage allocation

– Disk scheduling

• Some storage need not be fast

– Tertiary storage includes optical storage, magnetic tape

– Still must be managed

– Varies between WORM (write-once, read-many-times) and RW (read-write)

I/O Subsystem

• One purpose of OS is to hide peculiarities of
hardware devices from the user

• I/O subsystem responsible for
– Memory management of I/O including buffering

(storing data temporarily while it is being transferred),
caching (storing parts of data in faster storage for
performance), spooling (the overlapping of output of
one job with input of other jobs)

– General device-driver interface

– Drivers for specific hardware devices

Protection and Security

• Protection – any mechanism for controlling access of processes or
users to resources defined by the OS

• Security – defense of the system against internal and external
attacks
– Huge range, including denial-of-service, worms, viruses, identity theft,

theft of service
• Systems generally first distinguish among users, to determine who

can do what
– User identities (user IDs, security IDs) include name and associated

number, one per user
– User ID then associated with all files, processes of that user to

determine access control
– Group identifier (group ID) allows set of users to be defined and

controls managed, then also associated with each process, file
– Privilege escalation allows user to change to effective ID with more

rights

Computing Environments

• Traditional computer

– Blurring over time

– Office environment

• PCs connected to a network, terminals attached to mainframe or
minicomputers providing batch and timesharing

• Now portals allowing networked and remote systems access to same
resources

– Home networks

• Used to be single system, then modems

• Now firewalled, networked

Computing Environments (Cont.)
 Client-Server Computing

 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated by clients

 Compute-server provides an interface to client to request services
(i.e. database)

 File-server provides interface for clients to store and retrieve files

Peer-to-Peer Computing

• Another model of distributed system

• P2P does not distinguish clients and servers
– Instead all nodes are considered peers

– May each act as client, server or both

– Node must join P2P network
• Registers its service with central lookup service on

network, or

• Broadcast request for service and respond to requests
for service via discovery protocol

– Examples include Napster and Gnutella

Web-Based Computing

• Web has become ubiquitous

• PCs most prevalent devices

• More devices becoming networked to allow
web access

• New category of devices to manage web
traffic among similar servers: load balancers

• Use of operating systems like Windows 95,
client-side, have evolved into Linux and
Windows XP, which can be clients and servers

Operating-System Structures

• Operating System Services
• User Operating System Interface
• System Calls
• Types of System Calls
• System Programs
• Operating System Design and Implementation
• Operating System Structure
• Virtual Machines
• Operating System Generation
• System Boot

Operating System Services
• One set of operating-system services provides functions that are helpful to the user:

– User interface - Almost all operating systems have a user
interface (UI)
• Varies between Command-Line (CLI), Graphics User Interface

(GUI), Batch

– Program execution - The system must be able to load a
program into memory and to run that program, end
execution, either normally or abnormally (indicating error)

– I/O operations - A running program may require I/O,
which may involve a file or an I/O device.

– File-system manipulation - The file system is of particular
interest. Obviously, programs need to read and write files
and directories, create and delete them, search them, list
file Information, permission management.

Operating System Services (Cont.)
• One set of operating-system services provides functions that are helpful to

the user (Cont):

– Communications – Processes may exchange
information, on the same computer or between
computers over a network
• Communications may be via shared memory or through

message passing (packets moved by the OS)

– Error detection – OS needs to be constantly aware
of possible errors
• May occur in the CPU and memory hardware, in I/O

devices, in user program

• For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

• Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

Operating System Services (Cont.)
• Another set of OS functions exists for ensuring the efficient operation of the system

itself via resource sharing

– Resource allocation - When multiple users or multiple jobs running concurrently,
resources must be allocated to each of them

• Many types of resources - Some (such as CPU cycles,mainmemory, and file
storage) may have special allocation code, others (such as I/O devices) may
have general request and release code.

– Accounting - To keep track of which users use how much and what kinds of
computer resources

– Protection and security - The owners of information stored in a multiuser or
networked computer system may want to control use of that information,
concurrent processes should not interfere with each other

• Protection involves ensuring that all access to system resources is controlled

• Security of the system from outsiders requires user authentication, extends
to defending external I/O devices from invalid access attempts

• If a system is to be protected and secure, precautions must be instituted
throughout it. A chain is only as strong as its weakest link.

User Operating System Interface - CLI

CLI allows direct command entry
• Sometimes implemented in kernel, sometimes

by systems program

• Sometimes multiple flavors implemented –
shells

• Primarily fetches a command from user and
executes it
– Sometimes commands built-in, sometimes just

names of programs

» If the latter, adding new features doesn’t require
shell modification

User Operating System Interface - GUI

• User-friendly desktop metaphor interface
– Usually mouse, keyboard, and monitor
– Icons represent files, programs, actions, etc
– Various mouse buttons over objects in the interface cause

various actions (provide information, options, execute function,
open directory (known as a folder)

– Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces
– Microsoft Windows is GUI with CLI “command” shell
– Apple Mac OS X as “Aqua” GUI interface with UNIX kernel

underneath and shells available
– Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

System Calls

• Programming interface to the services provided by the OS
• Typically written in a high-level language (C or C++)
• Mostly accessed by programs via a high-level Application

Program Interface (API) rather than direct system call use
• Three most common APIs are Win32 API for Windows,

POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X), and Java API for the
Java virtual machine (JVM)

• Why use APIs rather than system calls?

(Note that the system-call names used throughout this text
are generic)

Example of System Calls

• System call sequence to copy the contents of
one file to another file

Example of Standard API

• Consider the ReadFile() function in the

• Win32 API—a function for reading from a file

• A description of the parameters passed to ReadFile()

– HANDLE file—the file to be read

– LPVOID buffer—a buffer where the data will be read into and written from

– DWORD bytesToRead—the number of bytes to be read into the buffer

– LPDWORD bytesRead—the number of bytes read during the last read

– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

• Typically, a number associated with each system call
– System-call interface maintains a table indexed according to

these numbers

• The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return
values

• The caller need know nothing about how the system call is
implemented
– Just needs to obey API and understand what OS will do as a

result call
– Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions built into
libraries included with compiler)

API – System Call – OS Relationship

Standard C Library Example

• C program invoking printf() library call,
which calls write() system call

System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call
– Exact type and amount of information vary according to OS and

call
• Three general methods used to pass parameters to the OS

– Simplest: pass the parameters in registers
• In some cases, may be more parameters than registers

– Parameters stored in a block, or table, in memory, and address
of block passed as a parameter in a register
• This approach taken by Linux and Solaris

– Parameters placed, or pushed, onto the stack by the program
and popped off the stack by the operating system

– Block and stack methods do not limit the number or length of
parameters being passed

Parameter Passing via Table

Types of System Calls

• Process control

• File management

• Device management

• Information maintenance

• Communications

MS-DOS execution

(a) At system startup (b) running a program

FreeBSD Running Multiple Programs

System Programs
• System programs provide a convenient environment

for program development and execution. The can
be divided into:
– File manipulation
– Status information
– File modification
– Programming language support
– Program loading and execution
– Communications
– Application programs

• Most users’ view of the operation system is defined
by system programs, not the actual system calls

System Programs

• Provide a convenient environment for program development and execution

– Some of them are simply user interfaces to system calls; others are considerably more
complex

• File management - Create, delete, copy, rename, print, dump, list, and generally manipulate
files and directories

• Status information

– Some ask the system for info - date, time, amount of available memory, disk space,
number of users

– Others provide detailed performance, logging, and debugging information

– Typically, these programs format and print the output to the terminal or other output
devices

– Some systems implement a registry - used to store and retrieve configuration
information

System Programs (cont’d)

• File modification
– Text editors to create and modify files
– Special commands to search contents of files or perform

transformations of the text
• Programming-language support - Compilers, assemblers,

debuggers and interpreters sometimes provided
• Program loading and execution- Absolute loaders,

relocatable loaders, linkage editors, and overlay-loaders,
debugging systems for higher-level and machine language

• Communications - Provide the mechanism for creating
virtual connections among processes, users, and computer
systems
– Allow users to send messages to one another’s screens, browse

web pages, send electronic-mail messages, log in remotely,
transfer files from one machine to another

Operating System Design and Implementation

• Design and Implementation of OS not “solvable”, but
some approaches have proven successful

• Internal structure of different Operating Systems can
vary widely

• Start by defining goals and specifications
• Affected by choice of hardware, type of system
• User goals and System goals

– User goals – operating system should be convenient to
use, easy to learn, reliable, safe, and fast

– System goals – operating system should be easy to design,
implement, and maintain, as well as flexible, reliable,
error-free, and efficient

Operating System Design and Implementation (Cont.)

• Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

• Mechanisms determine how to do something,
policies decide what will be done

– The separation of policy from mechanism is a very
important principle, it allows maximum flexibility
if policy decisions are to be changed later

Simple Structure

• MS-DOS – written to provide the most
functionality in the least space

– Not divided into modules

– Although MS-DOS has some structure, its
interfaces and levels of functionality are not well
separated

MS-DOS Layer Structure

Layered Approach

• The operating system is divided into a number
of layers (levels), each built on top of lower
layers. The bottom layer (layer 0), is the
hardware; the highest (layer N) is the user
interface.

• With modularity, layers are selected such that
each uses functions (operations) and services
of only lower-level layers

Layered Operating System

UNIX

• UNIX – limited by hardware functionality, the
original UNIX operating system had limited
structuring. The UNIX OS consists of two
separable parts
– Systems programs
– The kernel

• Consists of everything below the system-call interface
and above the physical hardware

• Provides the file system, CPU scheduling, memory
management, and other operating-system functions; a
large number of functions for one level

UNIX System Structure

Microkernel System Structure

• Moves as much from the kernel into “user” space
• Communication takes place between user modules

using message passing
• Benefits:

– Easier to extend a microkernel
– Easier to port the operating system to new architectures
– More reliable (less code is running in kernel mode)
– More secure

• Detriments:
– Performance overhead of user space to kernel space

communication

Mac OS X Structure

Modules

• Most modern operating systems implement
kernel modules

– Uses object-oriented approach

– Each core component is separate

– Each talks to the others over known interfaces

– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible

Solaris Modular Approach

Virtual Machines
• A virtual machine takes the layered approach

to its logical conclusion. It treats hardware
and the operating system kernel as though
they were all hardware

• A virtual machine provides an interface
identical to the underlying bare hardware

• The operating system creates the illusion of
multiple processes, each executing on its
own processor with its own (virtual) memory

Virtual Machines (Cont.)

• The resources of the physical computer are
shared to create the virtual machines

– CPU scheduling can create the appearance that
users have their own processor

– Spooling and a file system can provide virtual card
readers and virtual line printers

– A normal user time-sharing terminal serves as the
virtual machine operator’s console

Virtual Machines (Cont.)

(a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

Virtual Machines (Cont.)

• The virtual-machine concept provides complete protection of
system resources since each virtual machine is isolated from
all other virtual machines. This isolation, however, permits no
direct sharing of resources.

• A virtual-machine system is a perfect vehicle for operating-
systems research and development. System development is
done on the virtual machine, instead of on a physical machine
and so does not disrupt normal system operation.

• The virtual machine concept is difficult to implement due to
the effort required to provide an exact duplicate to the
underlying machine

VMware Architecture

The Java Virtual Machine

Operating System Generation

• Operating systems are designed to run on any of
a class of machines; the system must be
configured for each specific computer site

• SYSGEN program obtains information concerning
the specific configuration of the hardware system

• Booting – starting a computer by loading the
kernel

• Bootstrap program – code stored in ROM that is
able to locate the kernel, load it into memory,
and start its execution

System Boot

• Operating system must be made available to
hardware so hardware can start it

– Small piece of code – bootstrap loader, locates
the kernel, loads it into memory, and starts it

– Sometimes two-step process where boot block at
fixed location loads bootstrap loader

– When power initialized on system, execution
starts at a fixed memory location

• Firmware used to hold initial boot code

Processes

• Process Concept

• Process Scheduling

• Operations on Processes

• Cooperating Processes

• Interprocess Communication

• Communication in Client-Server
Systems

Process Concept

• An operating system executes a variety of
programs:
– Batch system – jobs
– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process
almost interchangeably

• Process – a program in execution; process
execution must progress in sequential fashion

• A process includes:
– program counter
– stack
– data section

Process in Memory

Process State

• As a process executes, it changes state

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some

event to occur

– ready: The process is waiting to be assigned

to a process

– terminated: The process has finished

execution

Diagram of Process State

Process Control Block (PCB)
Information associated with each process
• Process state
• Program counter
• CPU registers
• CPU scheduling information
• Memory-management information
• Accounting information
• I/O status information

Process Control Block (PCB)

CPU Switch From Process to Process

Process Scheduling Queues

• Job queue – set of all processes in the system
• Ready queue – set of all processes residing in

main memory, ready and waiting to execute
• Device queues – set of processes waiting for an

I/O device
• Processes migrate among the various queues

Representation of Process Scheduling

Schedulers

• Long-term scheduler (or job scheduler) –
selects which processes should be
brought into the ready queue

• Short-term scheduler (or CPU scheduler)
– selects which process should be
executed next and allocates CPU

Addition of Medium Term Scheduling

Schedulers (Cont.)

• Short-term scheduler is invoked very frequently
(milliseconds)  (must be fast)

• Long-term scheduler is invoked very infrequently
(seconds, minutes)  (may be slow)

• The long-term scheduler controls the degree of
multiprogramming

• Processes can be described as either:
– I/O-bound process – spends more time doing I/O

than computations, many short CPU bursts
– CPU-bound process – spends more time doing

computations; few very long CPU bursts

Context Switch
• When CPU switches to another process, the

system must save the state of the old process
and load the saved state for the new process

• Context-switch time is overhead; the system
does no useful work while switching

• Time dependent on hardware support

Process Creation

• Parent process create children processes, which,
in turn create other processes, forming a tree of
processes

• Resource sharing
– Parent and children share all resources

– Children share subset of parent’s resources

– Parent and child share no resources

• Execution
– Parent and children execute concurrently

– Parent waits until children terminate

Process Creation (Cont.)

• Address space

– Child duplicate of parent

– Child has a program loaded into it

• UNIX examples

– fork system call creates new process

– exec system call used after a fork to replace the
process’ memory space with a new program

Process Creation

C Program Forking Separate Process
int main()

{

Pid_t pid;

/* fork another process */

pid = fork();

if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");

exit(-1);

}

else if (pid == 0) { /* child process */

execlp("/bin/ls", "ls", NULL);

}

else { /* parent process */

/* parent will wait for the child to complete */

wait (NULL);

printf ("Child Complete");

exit(0);

}

}

A tree of processes on a typical Solaris

Process Termination

• Process executes last statement and asks the operating
system to delete it (exit)
– Output data from child to parent (via wait)
– Process’ resources are deallocated by operating system

• Parent may terminate execution of children processes
(abort)
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– If parent is exiting

• Some operating system do not allow child to continue if its parent
terminates
– All children terminated - cascading termination

Interprocess Communication (IPC)

• Mechanism for processes to communicate and to
synchronize their actions

• Message system – processes communicate with each
other without resorting to shared variables

• IPC facility provides two operations:
– send(message) – message size fixed or variable
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus)
– logical (e.g., logical properties)

Communications Models

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from

process Q

• Properties of communication link
– Links are established automatically
– A link is associated with exactly one pair of

communicating processes
– Between each pair there exists exactly one link
– The link may be unidirectional, but is usually bi-

directional

Module 2: Threads

• Overview

• Multithreading Models

• Threading Issues

• Pthreads

• Windows XP Threads

• Linux Threads

• Java Threads

Single and Multithreaded Processes

Benefits

• Responsiveness

• Resource Sharing

• Economy

• Utilization of MP Architectures

User Threads

• Thread management done by user-level
threads library

• Three primary thread libraries:

– POSIX Pthreads

– Win32 threads

– Java threads

Kernel Threads

• Supported by the Kernel

• Examples

– Windows XP/2000

– Solaris

– Linux

– Tru64 UNIX

– Mac OS X

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

Many-to-One

• Many user-level threads mapped to single
kernel thread

• Examples:

– Solaris Green Threads

– GNU Portable Threads

Many-to-One Model

One-to-One

• Each user-level thread maps to kernel thread

• Examples

– Windows NT/XP/2000

– Linux

– Solaris 9 and later

One-to-one Model

Many-to-Many Model

• Allows many user level threads to be
mapped to many kernel threads

• Allows the operating system to create
a sufficient number of kernel threads

• Solaris prior to version 9

• Windows NT/2000 with the
ThreadFiber package

Many-to-Many Model

Threading Issues

• Semantics of fork() and exec() system
calls

• Thread cancellation

• Signal handling

• Thread pools

• Thread specific data

• Scheduler activations

Semantics of fork() and exec()

• Does fork() duplicate only the calling thread or
all threads?

Thread Cancellation

• Terminating a thread before it has
finished

• Two general approaches:

– Asynchronous cancellation terminates
the target thread immediately

– Deferred cancellation allows the target
thread to periodically check if it should
be cancelled

Signal Handling
• Signals are used in UNIX systems to notify a

process that a particular event has occurred
• A signal handler is used to process signals

1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

• Options:
– Deliver the signal to the thread to which the signal

applies
– Deliver the signal to every thread in the process
– Deliver the signal to certain threads in the process
– Assign a specific thread to receive all signals for the

process

Thread Pools
• Create a number of threads in a pool

where they await work

• Advantages:

– Usually slightly faster to service a
request with an existing thread than
create a new thread

– Allows the number of threads in the
application(s) to be bound to the size of
the pool

Thread Specific Data
• Allows each thread to have its own

copy of data

• Useful when you do not have
control over the thread creation
process (i.e., when using a thread
pool)

Scheduler Activations
• Both M:M and Two-level models

require communication to maintain the
appropriate number of kernel threads
allocated to the application

• Scheduler activations provide upcalls -
a communication mechanism from the
kernel to the thread library

• This communication allows an
application to maintain the correct
number kernel threads

Thread libraries
Pthreads

Windows XP Threads

Linux Threads

Java Threads

Pthreads
• A POSIX standard (IEEE 1003.1c)

API for thread creation and
synchronization

• API specifies behavior of the
thread library, implementation is
up to development of the library

• Common in UNIX operating
systems (Solaris, Linux, Mac OS X)

Windows XP Threads
• Implements the one-to-one mapping
• Each thread contains

– A thread id
– Register set
– Separate user and kernel stacks
– Private data storage area

• The register set, stacks, and private storage area
are known as the context of the threads

• The primary data structures of a thread include:
– ETHREAD (executive thread block)
– KTHREAD (kernel thread block)
– TEB (thread environment block)

Linux Threads

• Linux refers to them as tasks
rather than threads

• Thread creation is done through
clone() system call

• clone() allows a child task to
share the address space of the
parent task (process)

Java Threads
• Java threads are managed by the JVM

• Java threads may be created by:

– Extending Thread class

– Implementing the Runnable interface

Java Thread States

CPU Scheduling
• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Multiple-Processor Scheduling
• Real-Time Scheduling
• Thread Scheduling
• Operating Systems Examples
• Java Thread Scheduling
• Algorithm Evaluation

Basic Concepts
• Maximum CPU utilization obtained with

multiprogramming

• CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and
I/O wait

• CPU burst distribution

Alternating Sequence of CPU And I/O Bursts

Histogram of CPU-burst Times

CPU Scheduler

• Selects from among the processes in memory
that are ready to execute, and allocates the CPU
to one of them

• CPU scheduling decisions may take place when a
process:
1.Switches from running to waiting state
2.Switches from running to ready state
3.Switches from waiting to ready
4.Terminates

• Scheduling under 1 and 4 is nonpreemptive
• All other scheduling is preemptive

Dispatcher

• Dispatcher module gives control of the CPU
to the process selected by the short-term
scheduler; this involves:
– switching context

– switching to user mode

– jumping to the proper location in the user
program to restart that program

• Dispatch latency – time it takes for the
dispatcher to stop one process and start
another running

Scheduling Criteria
• CPU utilization – keep the CPU as busy as possible
• Throughput – # of processes that complete their

execution per time unit
• Turnaround time – amount of time to execute a

particular process
• Waiting time – amount of time a process has been

waiting in the ready queue
• Response time – amount of time it takes from when

a request was submitted until the first response is
produced, not output (for time-sharing
environment)

Optimization Criteria

• Max CPU utilization

• Max throughput

• Min turnaround time

• Min waiting time

• Min response time

First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

• Suppose that the processes arrive in the order: P1 , P2 ,
P3
The Gantt Chart for the schedule is:

• Waiting time for P1 = 0; P2 = 24; P3 = 27
• Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
P2 , P3 , P1

• The Gantt chart for the schedule is:

• Waiting time for P1 = 6; P2 = 0; P3 = 3
• Average waiting time: (6 + 0 + 3)/3 = 3
• Much better than previous case
• Convoy effect short process behind long process

P1P3P2

63 300

Shortest-Job-First (SJR) Scheduling

• Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with
the shortest time

• Two schemes:
– nonpreemptive – once CPU given to the process it cannot

be preempted until completes its CPU burst
– preemptive – if a new process arrives with CPU burst

length less than remaining time of current executing
process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF)

• SJF is optimal – gives minimum average waiting time
for a given set of processes

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive SJF

P1 P3 P2

73 160

P4

8 12

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Priority Scheduling

• A priority number (integer) is associated with each
process

• The CPU is allocated to the process with the highest
priority (smallest integer  highest priority)
– Preemptive
– nonpreemptive

• SJF is a priority scheduling where priority is the
predicted next CPU burst time

• Problem  Starvation – low priority processes may
never execute

• Solution  Aging – as time progresses increase the
priority of the process

Round Robin (RR)
• Each process gets a small unit of CPU time (time

quantum), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and
added to the end of the ready queue.

• If there are n processes in the ready queue and
the time quantum is q, then each process gets 1/n
of the CPU time in chunks of at most q time units
at once. No process waits more than (n-1)q time
units.

• Performance
– q large  FIFO
– q small  q must be large with respect to context

switch, otherwise overhead is too high

Example of RR with Time Quantum =
20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is:

• Typically, higher average turnaround than SJF, but
better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

Multilevel Queue

• Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

• Each queue has its own scheduling algorithm

– foreground – RR

– background – FCFS

• Scheduling must be done between the queues

– Fixed priority scheduling; (i.e., serve all from foreground then from background).
Possibility of starvation.

– Time slice – each queue gets a certain amount of CPU time which it can schedule
amongst its processes; i.e., 80% to foreground in RR

– 20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

• A process can move between the various
queues; aging can be implemented this way

• Multilevel-feedback-queue scheduler defined by
the following parameters:
– number of queues
– scheduling algorithms for each queue
– method used to determine when to upgrade a

process
– method used to determine when to demote a

process
– method used to determine which queue a process

will enter when that process needs service

Example of Multilevel Feedback
Queue

• Three queues:
– Q0 – RR with time quantum 8 milliseconds
– Q1 – RR time quantum 16 milliseconds
– Q2 – FCFS

• Scheduling
– A new job enters queue Q0 which is served FCFS.

When it gains CPU, job receives 8 milliseconds. If it
does not finish in 8 milliseconds, job is moved to
queue Q1.

– At Q1 job is again served FCFS and receives 16
additional milliseconds. If it still does not complete, it
is preempted and moved to queue Q2.

Multilevel Feedback Queues

Multiple-Processor Scheduling

• CPU scheduling more complex
when multiple CPUs are available

• Homogeneous processors within a
multiprocessor

• Load sharing

• Asymmetric multiprocessing – only
one processor accesses the system
data structures, alleviating the
need for data sharing

Real-Time Scheduling

• Hard real-time systems –
required to complete a critical
task within a guaranteed
amount of time

• Soft real-time computing –
requires that critical processes
receive priority over less
fortunate ones

Thread Scheduling

• Local Scheduling – How the threads
library decides which thread to put
onto an available LWP

• Global Scheduling – How the kernel
decides which kernel thread to run
next

Pthread Scheduling API
#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

int main(int argc, char *argv[])

{

int i;

pthread t tid[NUM THREADS];

pthread attr t attr;

/* get the default attributes */

pthread attr init(&attr);

/* set the scheduling algorithm to PROCESS or SYSTEM */

pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM);

/* set the scheduling policy - FIFO, RT, or OTHER */

pthread attr setschedpolicy(&attr, SCHED OTHER);

/* create the threads */

for (i = 0; i < NUM THREADS; i++)

pthread create(&tid[i],&attr,runner,NULL);

Pthread Scheduling API

/* now join on each thread */

for (i = 0; i < NUM THREADS; i++)

pthread join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)

{

printf("I am a thread\n");

pthread exit(0);

}

Operating System Examples

• Solaris scheduling

• Windows XP scheduling

• Linux scheduling

Solaris 2 Scheduling

Solaris Dispatch Table

Windows XP Priorities

Linux Scheduling
• Two algorithms: time-sharing and real-time
• Time-sharing

– Prioritized credit-based – process with most credits
is scheduled next

– Credit subtracted when timer interrupt occurs
– When credit = 0, another process chosen
– When all processes have credit = 0, recrediting

occurs
• Based on factors including priority and history

• Real-time
– Soft real-time
– Posix.1b compliant – two classes

• FCFS and RR
• Highest priority process always runs first

The Relationship Between Priorities and Time-slice length

List of Tasks Indexed According to Prorities

Algorithm Evaluation

• Deterministic modeling – takes a
particular predetermined workload
and defines the performance of
each algorithm for that workload

• Queueing models

• Implementation

5.15

5.08

In-5.7

In-5.8

In-5.9

Dispatch Latency

Process Synchronization

• Background

• The Critical-Section Problem

• Peterson’s Solution

• Synchronization Hardware

• Semaphores

• Classic Problems of Synchronization

• Monitors

• Synchronization Examples

• Atomic Transactions

Background
• Concurrent access to shared data may result in data

inconsistency

• Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes is

called as race condition.

• Suppose that we wanted to provide a solution to the

consumer-producer problem that fills all the buffers. We

can do so by having an integer count that keeps track of the

number of full buffers. Initially, count is set to 0. It is

incremented by the producer after it produces a new buffer

and is decremented by the consumer after it consumes a

buffer.

Solution to Critical-Section Problem
1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in their
critical sections

2. Progress - If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then the selection of the processes that
will enter the critical section next cannot be postponed
indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is granted
 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N processes

Peterson’s Solution
• Two process solution
• Assume that the LOAD and STORE

instructions are atomic; that is, cannot be
interrupted.

• The two processes share two variables:
– int turn;
– Boolean flag[2]

• The variable turn indicates whose turn it is
to enter the critical section.

• The flag array is used to indicate if a
process is ready to enter the critical
section. flag[i] = true implies that process Pi
is ready!

Algorithm for Process Pi

do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

CRITICAL SECTION

flag[i] = FALSE;

REMAINDER SECTION

} while (TRUE);

Synchronization Hardware
• Many systems provide hardware support

for critical section code
• Uniprocessors – could disable interrupts

– Currently running code would execute
without preemption

– Generally too inefficient on multiprocessor
systems
• Operating systems using this not broadly scalable

• Modern machines provide special atomic
hardware instructions

• Atomic = non-interruptable

– Either test memory word and set value
– Or swap contents of two memory words

TestAndndSet Instruction

• Definition:

boolean TestAndSet (boolean
*target)

{
boolean rv = *target;
*target = TRUE;
return rv:

}

Solution using TestAndSet
• Shared boolean variable lock., initialized to false.
• Solution:

do {
while (TestAndSet (&lock))

; /* do nothing

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

Swap Instruction

• Definition:

void Swap (boolean *a, boolean *b)
{

boolean temp = *a;
*a = *b;
*b = temp:

}

Solution using Swap
• Shared Boolean variable lock initialized to FALSE; Each

process has a local Boolean variable key.
• Solution:

do {
key = TRUE;
while (key == TRUE)

Swap (&lock, &key);

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

Semaphore
• Synchronization tool that does not require busy waiting
• Semaphore S – integer variable
• Two standard operations modify S: wait() and signal()

– Originally called P() and V()
• Less complicated
• Can only be accessed via two indivisible (atomic) operations

– wait (S) {
while S <= 0

; // no-op
S--;

}
– signal (S) {

S++;
}

Semaphore as General Synchronization Tool

• Counting semaphore – integer value can range over an
unrestricted domain

• Binary semaphore – integer value can range only between
0
and 1; can be simpler to implement
– Also known as mutex locks

• Can implement a counting semaphore S as a binary
semaphore

• Provides mutual exclusion
– Semaphore S; // initialized to 1
– wait (S);

Critical Section
signal (S);

Semaphore Implementation
• Must guarantee that no two processes can execute wait

() and signal () on the same semaphore at the same
time

• Thus, implementation becomes the critical section
problem where the wait and signal code are placed in
the crtical section.
– Could now have busy waiting in critical section

implementation
• But implementation code is short
• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in critical
sections and therefore this is not a good solution.

Semaphore Implementation with no Busy waiting

• With each semaphore there is an associated
waiting queue. Each entry in a waiting queue
has two data items:
– value (of type integer)
– pointer to next record in the list

• Two operations:
– block – place the process invoking the operation

on the appropriate waiting queue.
– wakeup – remove one of processes in the

waiting queue and place it in the ready queue.

Semaphore Implementation with no Busy waiting (Cont.)

• Implementation of wait:

wait (S){
value--;
if (value < 0) {

add this process to waiting queue
block(); }

}

• Implementation of signal:

Signal (S){
value++;
if (value <= 0) {

remove a process P from the waiting queue
wakeup(P); }

}

Deadlock and Starvation

• Deadlock – two or more processes are waiting
indefinitely for an event that can be caused by only one
of the waiting processes

• Let S and Q be two semaphores initialized to 1
P0 P1

wait (S); wait (Q);

wait (Q); wait (S);
. .
. .
. .

signal (S); signal (Q);
signal (Q); signal (S);

• Starvation – indefinite blocking. A process may never
be removed from the semaphore queue in which it is
suspended.

Classical Problems of Synchronization

• Bounded-Buffer Problem

• Readers and Writers Problem

• Dining-Philosophers Problem

Bounded-Buffer Problem
• N buffers, each can hold one item

• Semaphore mutex initialized to the
value 1

• Semaphore full initialized to the
value 0

• Semaphore empty initialized to the
value N.

Bounded Buffer Problem (Cont.)
• The structure of the producer process

do {

// produce an item

wait (empty);

wait (mutex);

// add the item to the buffer

signal (mutex);

signal (full);

} while (true);

Bounded Buffer Problem (Cont.)
• The structure of the consumer process

do {

wait (full);

wait (mutex);

// remove an item from buffer

signal (mutex);

signal (empty);

// consume the removed item

} while (true);

Readers-Writers Problem
• A data set is shared among a number of concurrent

processes
– Readers – only read the data set; they do not perform any

updates
– Writers – can both read and write.

• Problem – allow multiple readers to read at the same
time. Only one single writer can access the shared data at
the same time.

• Shared Data
– Data set
– Semaphore mutex initialized to 1.
– Semaphore wrt initialized to 1.
– Integer readcount initialized to 0.

Readers-Writers Problem (Cont.)
• The structure of a writer process

do {
wait (wrt) ;

// writing is performed

signal (wrt) ;
} while (true)

Readers-Writers Problem (Cont.)
• The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readercount == 1) wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;
if redacount == 0) signal (wrt) ;
signal (mutex) ;

} while (true)

Dining-Philosophers Problem

• Shared data
– Bowl of rice (data set)
– Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem (Cont.)
• The structure of Philosopher i:

Do {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);
signal (chopstick[(i + 1) % 5]);

// think

} while (true) ;

Problems with Semaphores
• Incorrect use of semaphore

operations:

– signal (mutex) …. wait (mutex)

– wait (mutex) … wait (mutex)

– Omitting of wait (mutex) or signal
(mutex) (or both)

Monitors
• A high-level abstraction data type that provides a convenient and effective

mechanism for process synchronization

• Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations

procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

Schematic view of a Monitor

Condition Variables

• condition x, y;

• Two operations on a condition variable:

– x.wait () – a process that invokes the
operation is

suspended.

– x.signal () – resumes one of processes (if any)
tha

invoked x.wait ()

Monitor with Condition Variables

Solution to Dining Philosophers

monitor DP
{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HUNGRY;
test(i);
if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {
state[i] = THINKING;

// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

}

Solution to Dining Philosophers (cont)

void test (int i) {
if ((state[(i + 4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {

state[i] = EATING ;
self[i].signal () ;

}
}

initialization_code() {
for (int i = 0; i < 5; i++)
state[i] = THINKING;

}
}

Module 3: Deadlocks

System Model

Deadlock Characterization

Methods for Handling Deadlocks

Deadlock Prevention

Deadlock Avoidance

Deadlock Detection

Recovery from Deadlock

Combined Approach to Deadlock Handling

Operating System Concepts

The Deadlock Problem

• A set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set.

• Example

– System has 2 tape drives.

– P1 and P2 each hold one tape drive and each needs another one.

• Example

– semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

Operating System Concepts

Bridge Crossing Example

• Traffic only in one direction.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs up (preempt
resources and rollback).

• Several cars may have to be backed upif a deadlock occurs.

• Starvation is possible.

Operating System Concepts

System Model

• Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• Each process utilizes a resource as follows:

– request

– use

– release

Operating System Concepts

Deadlock Characterization

• Mutual exclusion: only one process at a time can use a resource.

• Hold and wait: a process holding at least one resource is waiting to
acquire additional resources held by other processes.

• No preemption: a resource can be released only voluntarily by the
process holding it, after that process has completed its task.

• Circular wait: there exists a set {P0, P1, …, P0} of waiting processes
such that P0 is waiting for a resource that is held by
P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting for
a resource that is held by Pn, and P0 is waiting for a resource that is
held by P0.

Deadlock can arise if four conditions hold simultaneously.

Operating System Concepts

Resource-Allocation Graph

• V is partitioned into two types:

– P = {P1, P2, …, Pn}, the set consisting of all the processes in the
system.

– R = {R1, R2, …, Rm}, the set consisting of all resource types in the
system.

• request edge – directed edge P1  Rj

• assignment edge – directed edge Rj  Pi

A set of vertices V and a set of edges E.

Operating System Concepts

Resource-Allocation Graph
(Cont.)

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

Operating System Concepts

Example of a Resource Allocation
Graph

Operating System Concepts

Resource Allocation Graph With A
Deadlock

Operating System Concepts

Deadlock Prevention

• Mutual Exclusion – not required for sharable resources; must hold for
nonsharable resources.

• Hold and Wait – must guarantee that whenever a process requests a
resource, it does not hold any other resources.

– Require process to request and be allocated all its resources
before it begins execution, or allow process to request resources
only when the process has none.

– Low resource utilization; starvation possible.

Restrain the ways request can be made.

Operating System ConceptsOperating System Concepts

Deadlock Prevention (Cont.)

• No Preemption –

– If a process that is holding some resources requests another
resource that cannot be immediately allocated to it, then all
resources currently being held are released.

– Preempted resources are added to the list of resources for which
the process is waiting.

– Process will be restarted only when it can regain its old resources,
as well as the new ones that it is requesting.

• Circular Wait – impose a total ordering of all resource types, and
require that each process requests resources in an increasing order of
enumeration.

Operating System ConceptsOperating System Concepts

Deadlock Avoidance

• Simplest and most useful model requires that each process declare
the maximum number of resources of each type that it may need.

• The deadlock-avoidance algorithm dynamically examines the
resource-allocation state to ensure that there can never be a circular-
wait condition.

• Resource-allocation state is defined by the number of available and
allocated resources, and the maximum demands of the processes.

Requires that the system has some additional a priori information

available.

Operating System ConceptsOperating System Concepts

Safe State

• When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state.

• System is in safe state if there exists a safe sequence of all processes.

• Sequence <P1, P2, …, Pn> is safe if for each Pi, the resources that Pi can
still request can be satisfied by currently available resources +
resources held by all the Pj, with j<I.

– If Pi resource needs are not immediately available, then Pi can
wait until all Pj have finished.

– When Pj is finished, Pi can obtain needed resources, execute,
return allocated resources, and terminate.

– When Pi terminates, Pi+1 can obtain its needed resources, and so
on.

Operating System ConceptsOperating System Concepts

Safe, unsafe , deadlock state
spaces

Operating System Concepts

To illustrate, we consider a system with twelve magnetic tape drives and three
processes: P0, P1 , and P2. Process P0 requires ten tape drives, process P1 may
need as many as four tape drives, and process P2 may need up to nine tape
drives. Suppose that, at time t0, process P0 is holding five tape drives, process
P1 is holding two tape drives, and process P2 is holding two tape drives. (Thus,
there are three free tape drives.)

Safe State

•At time t0, the system is in a safe state. The sequence <P1,P0,P2> satisfies the safety condition. Process P1 can
immediately be allocated all its tape drives and then return them (the system will then have five available tape
drives);

•then process P0 can get all its tape drives and return them (the system will then have ten available tape drives);

•and finally process P2 can get all its tape drives and return them (the system will then have all twelve tape drives
available).

•A system can go from a safe state to an unsafe state. Suppose that, at time t1, process P2 requests and is allocated
one more tape drive.

•The system is no longer in a safe state. At this point, only process P1 can be allocated all its tape drives. When it
returns them, the system will have only four available tape drives.

• Since process P0 is allocated five tapes drives but has a maximum of ten, it may request five more tape drives.

• If it does so, it will have to wait, because they are unavailable. Similarly, process P2 may request six additional tape
drives and have to wait, resulting in a deadlock.

•Our mistake was in granting the request from process P2 for one more tape drive.

•If we had made P2 wait until either of the other processes had finished and released its resources, then we could
have avoided the deadlock

Safe State

Operating System Concepts

Resource-Allocation Graph Algorithm

• Claim edge Pi  Rj indicated that process Pj may request resource Rj; represented
by a dashed line.

• Claim edge converts to request edge when a process requests a resource.

• When a resource is released by a process, assignment edge reconverts to a claim
edge.

• Resources must be claimed a priori in the system.

Operating System Concepts

Resource-Allocation Graph For Deadlock Avoidance

Operating System Concepts

Unsafe State In A Resource-Allocation
Graph

Operating System Concepts

Banker’s Algorithm

• Multiple instances.

• Each process must a priori claim maximum use.

• When a process requests a resource it may have to wait.

• When a process gets all its resources it must return them in a finite amount of
time.

Operating System Concepts

Data Structures for the Banker’s
Algorithm

• Available: Vector of length m. If available [j] = k, there are k instances
of resource type Rj available.

• Max: n x m matrix. If Max [i,j] = k, then process Pi may request at
most k instances of resource type Rj.

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently
allocated k instances of Rj.

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k more
instances of Rj to complete its task.

Need [i,j] = Max[i,j] – Allocation [i,j].

Let n = number of processes, and m = number of resources types.

Operating System Concepts

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work := Available

Finish [i] = false for i - 1,3, …, n.

2. Find and i such that both:

(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4.

3. Work := Work + Allocationi

Finish[i] := true
go to step 2.

4. If Finish [i] = true for all i, then the system is in a safe state.

Operating System Concepts

Resource-Request Algorithm for
Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then process Pi wants k
instances of resource type Rj.

1. If Requesti  Needi go to step 2. Otherwise, raise error condition, since
process has exceeded its maximum claim.

2. If Requesti  Available, go to step 3. Otherwise Pi must wait, since resources
are not available.

3. Pretend to allocate requested resources to Pi by modifying the state as
follows:

Available := Available = Requesti;

Allocationi := Allocationi + Requesti;

Needi := Needi – Requesti;;

• If safe  the resources are allocated to Pi.

• If unsafe  Pi must wait, and the old resource-allocation state is restored

Operating System Concepts

Example of Banker’s Algorithm

• 5 processes P0 through P4; 3 resource types A (10 instances),
B (5instances, and C (7 instances).

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Operating System Concepts

Example (Cont.)

• The content of the matrix. Need is defined to be Max – Allocation.

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies
safety criteria.

Operating System Concepts

Example (Cont.): P1 request (1,0,2)
• Check that Request  Available (that is, (1,0,2)  (3,3,2)  true.

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2>
satisfies safety requirement.

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

Operating System Concepts

Deadlock Detection

• Allow system to enter deadlock state

• Detection algorithm

• Recovery scheme

Operating System Concepts

Single Instance of Each Resource Type

• Maintain wait-for graph

– Nodes are processes.

– Pi  Pj if Pi is waiting for Pj.

• Periodically invoke an algorithm that searches for acycle in the graph.

• An algorithm to detect a cycle in a graph requires an order of n2 operations, where
n is the number of vertices in the graph.

Operating System Concepts

Resource-Allocation Graph And Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Operating System Concepts

Several Instances of a Resource Type

• Available: A vector of length m indicates the number of available
resources of each type.

• Allocation: An n x m matrix defines the number of resources of each
type currently allocated to each process.

• Request: An n x m matrix indicates the current request of each
process. If Request [ij] = k, then process Pi is requesting k more
instances of resource type. Rj.

Operating System Concepts

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work :- Available

(b) For i = 1,2, …, n, if Allocationi  0, then
Finish[i] := false;otherwise, Finish[i] := true.

2. Find an index i such that both:

(a) Finish[i] = false

(b) Requesti  Work

If no such i exists, go to step 4.

Operating System Concepts

Detection Algorithm (Cont.)

3. Work := Work + Allocationi

Finish[i] := true
go to step 2.

4. If Finish[i] = false, for some i, 1  i  n, then the system is in deadlock
state. Moreover, if Finish[i] = false, then Pi is deadlocked.

Algorithm requires an order of m x n2 operations to detect whether

the system is in deadlocked state.

Operating System Concepts

Example of Detection Algorithm

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances).

• Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

Operating System Concepts

Example (Cont.)

• P2 requests an additional instance of type C.

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

• State of system?

– Can reclaim resources held by process P0, but insufficient resources to fulfill
other processes; requests.

– Deadlock exists, consisting of processes P1, P2, P3, and P4.

Operating System Concepts

Detection-Algorithm Usage

• When, and how often, to invoke depends on:

– How often a deadlock is likely to occur?

– How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, there may be many cycles in the
resource graph and so we would not be able to tell which of the many deadlocked
processes “caused” the deadlock.

Operating System Concepts

Recovery from Deadlock: Process Termination

• Abort all deadlocked processes.

• Abort one process at a time until the deadlock cycle is eliminated.

• In which order should we choose to abort?

– Priority of the process.

– How long process has computed, and how much longer to completion.

– Resources the process has used.

– Resources process needs to complete.

– How many processes will need to be terminated.

– Is process interactive or batch?

Operating System Concepts

Recovery from Deadlock: Resource Preemption

• Selecting a victim – minimize cost.

• Rollback – return to some safe state, restart process fro that state.

• Starvation – same process may always be picked as victim, include number of
rollback in cost factor.

Operating System Concepts

Combined Approach to Deadlock
Handling

• Combine the three basic approaches

– prevention

– avoidance

– detection

allowing the use of the optimal approach for each of resources in the system.

• Partition resources into hierarchically ordered classes.

• Use most appropriate technique for handling deadlocks within each class.

Operating System Concepts

Memory Management

• Background

• Logical versus Physical Address Space

• Swapping

• Contiguous Allocation

• Paging

• Segmentation

• Segmentation with Paging

Operating System Concepts

Background

• Program must be brought into memory and placed within a process for it to be
executed.

• Input queue – collection of processes on the disk that are waiting to be brought
into memory for execution.

• User programs go through several steps before being executed.

Operating System Concepts

Binding of Instructions and Data to
Memory

• Compile time: If memory location known a priori, absolute code can
be generated; must recompile code if starting location changes.

• Load time: Must generate relocatable code if memory location is not
known at compile time.

• Execution time: Binding delayed until run time if the process can be
moved during its execution from one memory segment to another.
Need hardware support for address maps (e.g., base and limit
registers).

Address binding of instructions and data to memory addresses can

happen at three different stages.

Operating System Concepts

Dynamic Loading

• Routine is not loaded until it is called

• Better memory-space utilization; unused routine is never loaded.

• Useful when large amounts of code are needed to handle infrequently occurring
cases.

• No special support from the operating system is required implemented through
program design.

Operating System Concepts

Dynamic Linking

• Linking postponed until execution time.

• Small piece of code, stub, used to locate the appropriate memory-resident library
routine.

• Stub replaces itself with the address of the routine, and executes the routine.

• Operating system needed to check if routine is in processes’ memory address.

Operating System Concepts

Overlays

• Keep in memory only those instructions and data that are needed at any given
time.

• Needed when process is larger than amount of memory allocated to it.

• Implemented by user, no special support needed from operating system,
programming design of overlay structure is complex

Operating System Concepts

Logical vs. Physical Address Space

• The concept of a logical address space that is bound to a separate physical address
space is central to proper memory management.

– Logical address – generated by the CPU; also referred to as virtual address.

– Physical address – address seen by the memory unit.

• Logical and physical addresses are the same in compile-time and load-time
address-binding schemes; logical (virtual) and physical addresses differ in
execution-time address-binding scheme.

Operating System Concepts

Memory-Management Unit (MMU)

• Hardware device that maps virtual to physical address.

• In MMU scheme, the value in the relocation register is added to every address
generated by a user process at the time it is sent to memory.

• The user program deals with logical addresses; it never sees the real physical
addresses.

Operating System Concepts

Swapping

• A process can be swapped temporarily out of memory to a backing store, and then
brought back into memory for continued execution.

• Backing store – fast disk large enough to accommodate copies of all memory
images for all users; must provide direct access to these memory images.

• Roll out, roll in – swapping variant used for priority-based scheduling algorithms;
lower-priority process is swapped out so higher-priority process can be loaded and
executed.

• Major part of swap time is transfer time; total transfer time is directly proportional
to the amount of memory swapped.

• Modified versions of swapping are found on many systems, i.e., UNIX and
Microsoft Windows.

Operating System Concepts

Schematic View of Swapping

Operating System Concepts

Contiguous Allocation

• Main memory usually into two partitions:

– Resident operating system, usually held in low memory with interrupt vector.

– User processes then held in high memory.

• Single-partition allocation

– Relocation-register scheme used to protect user processes from each other,
and from changing operating-system code and data.

– Relocation register contains value of smallest physical address; limit register
contains range of logical addresses – each logical address must be less than
the limit register.

Operating System Concepts

Contiguous Allocation (Cont.)

• Multiple-partition allocation

– Hole – block of available memory; holes of various size are
scattered throughout memory.

– When a process arrives, it is allocated memory from a hole large
enough to accommodate it.

– Operating system maintains information about:
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Operating System Concepts

Dynamic Storage-Allocation Problem

• First-fit: Allocate the first hole that is big enough.

• Best-fit: Allocate the smallest hole that is big enough; must search
entire list, unless ordered by size. Produces the smallest leftover
hole.

• Worst-fit: Allocate the largest hole; must also search entier list.
Produces the largest leftover hole.

How to satisfy a request of size n from a list of free holes.

First-fit and best-fit better than worst-fit in terms of speed and

storage utilization.

Operating System Concepts

Fragmentation

• External fragmentation – total memory space exists to satisfy a request, but it is
not contiguous.

• Internal fragmentation – allocated memory may be slightly larger than requested
memory; this size difference is memory internal to a partition, but not being used.

• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory together in one large block.

– Compaction is possible only if relocation is dynamic, and is done at execution
time.

– I/O problem

• Latch job in memory while it is involved in I/O.

• Do I/O only into OS buffers.

Operating System Concepts

Paging

• Logical address space of a process can be noncontiguous; process is allocated
physical memory whenever the latter is available.

• Divide physical memory into fixed-sized blocks called frames (size is power of 2,
between 512 bytes and 8192 bytes).

• Divide logical memory into blocks of same size called pages.

• Keep track of all free frames.

• To run a program of size n pages, need to find n free frames and load program.

• Set up a page table to translate logical to physical addresses.

• Internal fragmentation.

Operating System Concepts

Address Translation Scheme

• Address generated by CPU is divided into:

– Page number (p) – used as an index into a page table which contains base
address of each page in physical memory.

– Page offset (d) – combined with base address to define the physical memory
address that is sent to the memory unit.

Operating System Concepts

Address Translation Architecture

Operating System Concepts

Paging Example

Operating System Concepts

Implementation of Page Table

• Page table is kept in main memory.

• Page-table base register (PTBR) points to the page table.

• Page-table length register (PRLR) indicates size of the page table.

• In this scheme every data/instruction access requires two memory accesses. One
for the page table and one for the data/instruction.

• The two memory access problem can be solved by the use of a special fast-lookup
hardware cache called associative registers or translation look-aside buffers (TLBs)

Operating System Concepts

Associative Register

• Associative registers – parallel search

Address translation (A´, A´´)

– If A´ is in associative register, get frame # out.

– Otherwise get frame # from page table in memory

Page # Frame #

Operating System Concepts

Effective Access Time

• Associative Lookup =  time unit

• Assume memory cycle time is 1 microsecond

• Hit ration – percentage of times that a page number is found in the associative
registers; ration related to number of associative registers.

• Hit ratio = 

• Effective Access Time (EAT)

EAT = (1 + )  + (2 + )(1 – )

= 2 +  – 

Operating System Concepts

Memory Protection

• Memory protection implemented by associating protection bit with each frame.

• Valid-invalid bit attached to each entry in the page table:

– “valid” indicates that the associated page is in the process’ logical address
space, and is thus a legal page.

– “invalid” indicates that the page is not in the process’ logical address space.

Operating System Concepts

Two-Level Page-Table Scheme

Operating System Concepts

Two-Level Paging Example
• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page number consisting of 20 bits.

– a page offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided into:

– a 10-bit page number.

– a 10-bit page offset.

• Thus, a logical address is as follows:

• where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table.

page number page offset

pi p2 d

10 10 12

Operating System Concepts

Address-Translation Scheme

• Address-translation scheme for a two-level 32-bit paging architecture

Operating System Concepts

Multilevel Paging and Performance

• Since each level is stored as a separate table in memory, covering a logical address
to a physical one may take four memory accesses.

• Even though time needed for one memory access is quintupled, caching permits
performance to remain reasonable.

• Cache hit rate of 98 percent yields:

effective access time = 0.98 x 120 + 0.02 x 520

= 128 nanoseconds.

which is only a 28 percent slowdown in memory access time.

Operating System Concepts

Inverted Page Table

• One entry for each real page of memory.

• Entry consists of the virtual address of the page stored in that real memory
location, with information about the process that owns that page.

• Decreases memory needed to store each page table, but increases time needed to
search the table when a page reference occurs.

• Use hash table to limit the search to one — or at most a few — page-table entries.

Operating System Concepts

Inverted Page Table Architecture

Operating System Concepts

Shared Pages

• Shared code

– One copy of read-only (reentrant) code shared among processes (i.e., text
editors, compilers, window systems).

– Shared code must appear in same location in the logical address space of all
processes.

• Private code and data

– Each process keeps a separate copy of the code and data.

– The pages for the private code and data can appear anywhere in the logical
address space.

Operating System Concepts

Shared Pages Example

Operating System Concepts

Segmentation

• Memory-management scheme that supports user view of memory.

• A program is a collection of segments. A segment is a logical unit such as:

main program,

procedure,

function,

local variables, global variables,

common block,

stack,

symbol table, arrays

Operating System Concepts

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Operating System Concepts

Segmentation Architecture

• Logical address consists of a two tuple:

<segment-number, offset>,

• Segment table – maps two-dimensional physical addresses; each table entry has:

– base – contains the starting physical address where the segments reside in
memory.

– limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the segment table’s location in
memory.

• Segment-table length register (STLR) indicates number of segments used by a
program;

segment number s is legal if s < STLR.

Operating System Concepts

Segmentation Architecture (Cont.)

• Relocation.

– dynamic

– by segment table

• Sharing.

– shared segments

– same segment number

• Allocation.

– first fit/best fit

– external fragmentation

Operating System Concepts

Segmentation Architecture (Cont.)

• Protection. With each entry in segment table associate:

– validation bit = 0  illegal segment

– read/write/execute privileges

• Protection bits associated with segments; code sharing occurs at segment level.

• Since segments vary in length, memory allocation is a dynamic storage-allocation
problem.

• A segmentation example is shown in the following diagram

Operating System Concepts

Sharing of segments

Operating System Concepts

Segmentation with Paging – MULTICS

• The MULTICS system solved problems of external fragmentation and lengthy
search times by paging the segments.

• Solution differs from pure segmentation in that the segment-table entry contains
not the base address of the segment, but rather the base address of a page table
for this segment.

Operating System Concepts

MULTICS Address Translation Scheme

Module 4: Virtual Memory

• Background

• Demand Paging

• Performance of Demand Paging

• Page Replacement

• Page-Replacement Algorithms

• Allocation of Frames

• Thrashing

• Other Considerations

• Demand Segmenation

Operating System Concepts

Background

• Virtual memory – separation of user logical memory from physical memory.

– Only part of the program needs to be in memory for execution.

– Logical address space can therefore be much larger than physical address
space.

– Need to allow pages to be swapped in and out.

• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation

Operating System Concepts

Demand Paging

• Bring a page into memory only when it is needed.

– Less I/O needed

– Less memory needed

– Faster response

– More users

• Page is needed  reference to it

– invalid reference  abort

– not-in-memory  bring to memory

Operating System Concepts

Valid-Invalid Bit
• With each page table entry a valid–invalid bit is associated

(1  in-memory, 0  not-in-memory)
• Initially valid–invalid but is set to 0 on all entries.
• Example of a page table snapshot.

• During address translation, if valid–invalid bit in page table entry is 0 
page fault.

1

1

1

1

0

0

0



Frame # valid-invalid bit

page table

Operating System Concepts

Page Fault
• If there is ever a reference to a page, first reference will trap to

OS  page fault

• OS looks at another table to decide:

– Invalid reference  abort.

– Just not in memory.

• Get empty frame.

• Swap page into frame.

• Reset tables, validation bit = 1.

• Restart instruction: Least Recently Used

– block move

– auto increment/decrement location

Operating System Concepts

What happens if there is no free
frame?

• Page replacement – find some page in memory, but not really in use, swap it out.

– algorithm

– performance – want an algorithm which will result in minimum number of
page faults.

• Same page may be brought into memory several times.

Operating System Concepts

Performance of Demand Paging

• Page Fault Rate 0  p  1.0

– if p = 0 no page faults

– if p = 1, every reference is a fault

• Effective Access Time (EAT)

EAT = (1 – p) x memory access

+ p (page fault overhead

+ [swap page out]

+ swap page in

+ restart overhead)

Operating System Concepts

Demand Paging Example

• Memory access time = 1 microsecond

• 50% of the time the page that is being replaced has been modified and therefore
needs to be swapped out.

• Swap Page Time = 10 msec = 10,000 msec

EAT = (1 – p) x 1 + p (15000)

1 + 15000P (in msec)

Operating System Concepts

Page Replacement

• Prevent over-allocation of memory by modifying page-fault service routine to
include page replacement.

• Use modify (dirty) bit to reduce overhead of page transfers – only modified pages
are written to disk.

• Page replacement completes separation between logical memory and physical
memory – large virtual memory can be provided on a smaller physical memory.

Operating System Concepts

Page-Replacement Algorithms

• Want lowest page-fault rate.

• Evaluate algorithm by running it on a particular string of memory references
(reference string) and computing the number of page faults on that string.

• In all our examples, the reference string is

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Operating System Concepts

First-In-First-Out (FIFO) Algorithm
• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• 3 frames (3 pages can be in memory at a time per process)

• 4 frames

• FIFO Replacement – Belady’s Anomaly

– more frames  less page faults

1

2

3

1

2

3

4

1

2

5

3

4

9 page faults

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Operating System Concepts

Optimal Algorithm

• Replace page that will not be used for longest period of time.

• 4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• How do you know this?

• Used for measuring how well your algorithm performs.

1

2

3

4

6 page faults

4 5

Operating System Concepts

Least Recently Used (LRU) Algorithm

• Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

• Counter implementation

– Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter.

– When a page needs to be changed, look at the counters to determine which
are to change.

1

2

3

5

4

4 3

5

Operating System Concepts

LRU Algorithm (Cont.)

• Stack implementation – keep a stack of page numbers in a double link form:

– Page referenced:

• move it to the top

• requires 6 pointers to be changed

– No search for replacement

Operating System Concepts

LRU Approximation Algorithms
• Reference bit

– With each page associate a bit, initially -= 0

– When page is referenced bit set to 1.

– Replace the one which is 0 (if one exists). We do not know the
order, however.

• Second chance

– Need reference bit.

– Clock replacement.

– If page to be replaced (in clock order) has reference bit = 1. then:

• set reference bit 0.

• leave page in memory.

• replace next page (in clock order), subject to same rules.

Operating System Concepts

Counting Algorithms

• Keep a counter of the number of references that have been made to each page.

• LFU Algorithm: replaces page with smallest count.

• MFU Algorithm: based on the argument that the page with the smallest count was
probably just brought in and has yet to be used.

Operating System Concepts

Allocation of Frames

• Each process needs minimum number of pages.

• Example: IBM 370 – 6 pages to handle SS MOVE instruction:

– instruction is 6 bytes, might span 2 pages.

– 2 pages to handle from.

– 2 pages to handle to.

• Two major allocation schemes.

– fixed allocation

– priority allocation

Operating System Concepts

Fixed Allocation
• Equal allocation – e.g., if 100 frames and 5 processes, give each 20

pages.

• Proportional allocation – Allocate according to the size of process.

m
S

s
pa

m

sS

ps

i
ii

i

ii









 for allocation

frames of number total

 process of size

5964
137

127

564
137

10

127

10

64

2

1

2











a

a

s

s

m

i

Operating System Concepts

Priority Allocation

• Use a proportional allocation scheme using priorities rather than size.

• If process Pi generates a page fault,

– select for replacement one of its frames.

– select for replacement a frame from a process with lower priority number.

Operating System Concepts

Global vs. Local Allocation

• Global replacement – process selects a replacement frame from the set of all
frames; one process can take a frame from another.

• Local replacement – each process selects from only its own set of allocated
frames.

Operating System Concepts

Thrashing

• If a process does not have “enough” pages, the page-fault rate is very high. This
leads to:

– low CPU utilization.

– operating system thinks that it needs to increase the degree of
multiprogramming.

– another process added to the system.

• Thrashing  a process is busy swapping pages in and out.

Operating System Concepts

Thrashing Diagram

• Why does paging work?
Locality model

– Process migrates from one locality to another.

– Localities may overlap.

• Why does thrashing occur?
 size of locality > total memory size

Operating System Concepts

File-System Interface

• File Concept

• Access :Methods

• Directory Structure

• Protection

• Consistency Semantics

Operating System Concepts

File Concept

• Contiguous logical address space

• Types:

– Data

• numeric

• character

• binary

– Program

Operating System Concepts

File Structure

• None - sequence of words, bytes

• Simple record structure

– Lines

– Fixed length

– Variable length

• Complex Structures

– Formatted document

– Relocatable load file

• Can simulate last two with first method by inserting appropriate control
characters.

• Who decides:

– Operating system

– Program

Operating System Concepts

File Attributes

• Name – only information kept in human-readable form.

• Type – needed for systems that support different types.

• Location – pointer to file location on device.

• Size – current file size.

• Protection – controls who can do reading, writing, executing.

• Time, date, and user identification – data for protection, security, and usage
monitoring.

• Information about files are kept in the directory structure, which is maintained on
the disk.

Operating System Concepts

File Operations

• create

• write

• read

• reposition within file – file seek

• delete

• truncate

• open(Fi) – search the directory structure on disk for entry Fi, and move the content
of entry to memory.

• close (Fi) – move the content of entry Fi in memory to directory structure on disk.

Operating System Concepts

File Types – name, extension

Executable exe, com, bin or
none

ready-to-run machine-
language program

Object obj, o complied, machine
language, not linked

Source code c, p, pas, 177,
asm, a

source code in various
languages

Batch bat, sh commands to the
command interpreter

Text txt, doc textual data documents

Word processor wp, tex, rrf, etc. various word-processor
formats

Library lib, a libraries of routines

Print or view ps, dvi, gif ASCII or binary file

Archive arc, zip, tar related files grouped
into one file, sometimes
compressed.

File Type Usual extension Function

Operating System Concepts

Access Methods

• Sequential Access

read next

write next

reset

no read after last write

(rewrite)

• Direct Access

read n

write n

position to n

read next

write next

rewrite n

n = relative block number

Operating System Concepts

Directory Structure
• A collection of nodes containing information about all files.

F 1 F 2
F 3

F 4

F n

Directory

Files

• Both the directory structure and the files reside on disk.

• Backups of these two structures are kept on tapes.

Operating System Concepts

Information in a Device Directory

• Name

• Type

• Address

• Current length

• Maximum length

• Date last accessed (for archival)

• Date last updated (for dump)

• Owner ID (who pays)

• Protection information (discuss later)

Operating System Concepts

Operations Performed on Directory

• Search for a file

• Create a file

• Delete a file

• List a directory

• Rename a file

• Traverse the file system

Operating System Concepts

Organize the Directory (Logically) to
Obtain

• Efficiency – locating a file quickly.

• Naming – convenient to users.

– Two users can have same name for different files.

– The same file can have several different names.

• Grouping – logical grouping of files by properties, (e.g., all Pascal programs, all
games, …)

Operating System Concepts

Single-Level Directory

• A single directory for all users.

• Naming problem

• Grouping problem

Operating System Concepts

Two-Level Directory
• Separate directory for each user.

• Path name

• Can have the saem file name for different user

• Efficient searching

• No grouping capability

Operating System Concepts

Tree-Structured Directories

Operating System Concepts

Tree-Structured Directories (Cont.)

• Efficient searching

• Grouping Capability

• Current directory (working directory)

– cd /spell/mail/prog

– type list

Operating System Concepts

Tree-Structured Directories (Cont.)
• Absolute or relative path name

• Creating a new file is done in current directory.

• Delete a file

rm <file-name>

• Creating a new subdirectory is done in current directory.

mkdir <dir-name>

Example: if in current directory /spell/mail

mkdir count

mail

prog copy prt exp count

• Deleting “mail”  deleting the entire subtree rooted by “mail”.

Operating System Concepts

Acyclic-Graph Directories
• Have shared subdirectories and files.

Operating System Concepts

Acyclic-Graph Directories (Cont.)

• Two different names (aliasing)

• If dict deletes list  dangling pointer.

Solutions:

– Backpointers, so we can delete all pointers.
Variable size records a problem.

– Backpointers using a daisy chain organization.

– Entry-hold-count solution.

Operating System Concepts

General Graph Directory

Operating System Concepts

General Graph Directory (Cont.)

• How do we guarantee no cycles?

– Allow only links to file not subdirectories.

– Garbage collection.

– Every time a new link is added use a cycle detection
algorithm to determine whether it is OK.

Operating System Concepts

Protection

• File owner/creator should be able to control:

– what can be done

– by whom

• Types of access

– Read

– Write

– Execute

– Append

– Delete

– List

Operating System Concepts

Access Lists and Groups
• Mode of access: read, write, execute

• Three classes of users

RWX

a) owner access 7  1 1 1
RWX

b) groups access 6  1 1 0

RWX

c) public access 1  0 0 1

• Ask manager to create a group (unique name), say G, and add some
users to the group.

• For a particular file (say game) or subdirectory, define an appropriate
access.

owner group public

chmod 761 game

• Attach a group to a file

chgrp G game

Operating System Concepts

File-System Implementation

• File-System Structure

• Allocation Methods

• Free-Space Management

• Directory Implementation

• Efficiency and Performance

• Recovery

Operating System Concepts

File-System Structure

• File structure

– Logical storage unit

– Collection of related information

• File system resides on secondary storage (disks).

• File system organized into layers.

• File control block – storage structure consisting of information about a file.

Operating System Concepts

Contiguous Allocation

• Each file occupies a set of contiguous blocks on the disk.

• Simple – only starting location (block #) and length (number of blocks)
are required.

• Random access.

• Wasteful of space (dynamic storage-allocation problem).

• Files cannot grow.

• Mapping from logical to physical.

LA/512

Q

R

– Block to be accessed = ! + starting address

– Displacement into block = R

Operating System Concepts

Linked Allocation

• Each file is a linked list of disk blocks: blocks may be scattered
anywhere on the disk.

pointerblock =

Operating System Concepts

• Allocate as needed, link together; e.g., file starts at block 9

Operating System Concepts

Linked Allocation (Cont.)

• Simple – need only starting address

• Free-space management system – no waste of space

• No random access

• Mapping

– Block to be accessed is the Qth block in the linked chain of blocks
representing the file.

– Displacement into block = R + 1

• File-allocation table (FAT) – disk-space allocation used by MS-DOS and
OS/2.

LA/511

Q

R

Operating System Concepts

Indexed Allocation

• Brings all pointers together into the index block.

• Logical view.

index table

Operating System Concepts

Example of Indexed Allocation

Operating System Concepts

Indexed Allocation (Cont.)
• Need index table

• Random access

• Dynamic access without external fragmentation, but have overhead
of index block.

• Mapping from logical to physical in a file of maximum size of 256K
words and block size of 512 words. We need only 1 block for index
table.

LA/512

Q

R

– Q = displacement into index table

– R = displacement into block

Operating System Concepts

Indexed Allocation – Mapping (Cont.)

• Mapping from logical to physical in a file of unbounded length (block
size of 512 words).

• Linked scheme – Link blocks of index table (no limit on size).

LA / (512 x 511)

Q1

R1

– Q1 = block of index table

– R1 is used as follows:

R1 / 512

Q2

R2

– Q2 = displacement into block of index table

– R2 displacement into block of file:

Operating System Concepts

Indexed Allocation – Mapping (Cont.)

• Two-level index (maximum file size is 5123)

LA / (512 x 512)

Q1

R1

– Q1 = displacement into outer-index

– R1 is used as follows:

R1 / 512

Q2

R2

– Q2 = displacement into block of index table

– R2 displacement into block of file:

Operating System Concepts

Indexed Allocation – Mapping (Cont.)



outer-index

index table file

Operating System Concepts

Combined Scheme: UNIX (4K bytes per block)

Operating System Concepts

Free-Space Management
• Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =



 0  block[i] free

1  block[i] occupied

• Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

Operating System Concepts

Free-Space Management (Cont.)

• Bit map requires extra space. Example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

• Easy to get contiguous files

• Linked list (free list)

– Cannot get contiguous space easily

– No waste of space

• Grouping

• Counting

Operating System Concepts

Free-Space Management (Cont.)

• Need to protect:

– Pointer to free list

– Bit map

• Must be kept on disk

• Copy in memory and disk may differ.

• Cannot allow for block[i] to have a situation where bit[i] = 1 in
memory and bit[i] = 0 on disk.

– Solution:

• Set bit[i] = 1 in disk.

• Allocate block[i]

• Set bit[i] = 1 in memory

Operating System Concepts

Directory Implementation

• Linear list of file names with pointer to the data blocks.

– simple to program

– time-consuming to execute

• Hash Table – linear list with hash data structure.

– decreases directory search time

– collisions – situations where two file names hash to the same location

– fixed size

Operating System Concepts

Efficiency and Performance

• Efficiency dependent on:

– disk allocation and directory algorithms

– types of data kept in file’s directory entry

• Performance

– disk cache – separate section of main memory for frequently sued blocks

– free-behind and read-ahead – techniques to optimize sequential access

– improve PC performance by dedicating section of memroy as virtual disk, or
RAM disk.

Operating System Concepts

Various Disk-Caching Locations

Operating System Concepts

Recovery

• Consistency checker – compares data in directory structure with data blocks on
disk, and tries to fix inconsistencies.

• Use system programs to back up data from disk to another storage device (floppy
disk, magnetic tape).

• Recover lost file or disk by restoring data from backup.

Module 5:
Mass-Storage Systems

• Overview of Mass Storage Structure

• Disk Structure

• Disk Attachment

• Disk Scheduling

• Disk Management

• Swap-Space Management

• RAID Structure

• Stable-Storage Implementation

Overview of Mass Storage Structure

• Magnetic disks provide bulk of secondary storage of modern computers

– Drives rotate at 60 to 250 times per second

– Transfer rate is rate at which data flow between drive and computer

– Positioning time (random-access time) is time to move disk arm to desired
cylinder (seek time) and time for desired sector to rotate under the disk
head (rotational latency)

– Head crash results from disk head making contact with the disk surface --
That’s bad

• Disks can be removable

• Drive attached to computer via I/O bus

– Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI, SAS,
Firewire

– Host controller in computer uses bus to talk to disk controller built into
drive or storage array

Moving-head Disk Mechanism

Hard Disks

• Platters range from .85” to 14” (historically)

– Commonly 3.5”, 2.5”, and 1.8”

• Range from 30GB to 3TB per drive

• Performance

– Transfer Rate – theoretical – 6 Gb/sec

– Effective Transfer Rate – real – 1Gb/sec

– Seek time from 3ms to 12ms – 9ms
common for desktop drives

– Average seek time measured or calculated
based on 1/3 of tracks

– Latency based on spindle speed

• 1 / (RPM / 60) = 60 / RPM

– Average latency = ½ latency

(From Wikipedia)

Hard Disk Performance

• Access Latency = Average access time = average seek time + average
latency

– For fastest disk 3ms + 2ms = 5ms

– For slow disk 9ms + 5.56ms = 14.56ms

• Average I/O time = average access time + (amount to transfer / transfer
rate) + controller overhead

• For example to transfer a 4KB block on a 7200 RPM disk with a 5ms
average seek time, 1Gb/sec transfer rate with a .1ms controller
overhead =

– 5ms + 4.17ms + 0.1ms + transfer time =

– Transfer time = 4KB / 1Gb/s * 8Gb / GB * 1GB / 10242KB = 32 /
(10242) = 0.031 ms

– Average I/O time for 4KB block = 9.27ms + .031ms = 9.301ms

Solid-State Disks

• Nonvolatile memory used like a hard drive

– Many technology variations

• Can be more reliable than HDDs

• More expensive per MB

• Maybe have shorter life span

• Less capacity

• But much faster

• Busses can be too slow -> connect directly to PCI for example

• No moving parts, so no seek time or rotational latency

Magnetic Tape

• Was early secondary-storage medium

– Evolved from open spools to cartridges

• Relatively permanent and holds large quantities of data

• Access time slow

• Random access ~1000 times slower than disk

• Mainly used for backup, storage of infrequently-used data, transfer
medium between systems

• Kept in spool and wound or rewound past read-write head

• Once data under head, transfer rates comparable to disk

– 140MB/sec and greater

• 200GB to 1.5TB typical storage

• Common technologies are LTO-{3,4,5} and T10000

Disk Structure

• Disk drives are addressed as large 1-dimensional arrays of logical blocks,
where the logical block is the smallest unit of transfer

– Low-level formatting creates logical blocks on physical media

• The 1-dimensional array of logical blocks is mapped into the sectors of
the disk sequentially

– Sector 0 is the first sector of the first track on the outermost cylinder

– Mapping proceeds in order through that track, then the rest of the
tracks in that cylinder, and then through the rest of the cylinders
from outermost to innermost

– Logical to physical address should be easy

• Except for bad sectors

• Non-constant # of sectors per track via constant angular velocity

Disk Attachment

• Host-attached storage accessed through I/O ports talking to I/O busses

• SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator requests
operation and SCSI targets perform tasks

– Each target can have up to 8 logical units (disks attached to device
controller)

• FC is high-speed serial architecture

– Can be switched fabric with 24-bit address space – the basis of
storage area networks (SANs) in which many hosts attach to many
storage units

• I/O directed to bus ID, device ID, logical unit (LUN)

Storage Array

• Can just attach disks, or arrays of disks

• Storage Array has controller(s), provides features to attached host(s)

– Ports to connect hosts to array

– Memory, controlling software (sometimes NVRAM, etc)

– A few to thousands of disks

– RAID, hot spares, hot swap (discussed later)

– Shared storage -> more efficiency

– Features found in some file systems

• Snaphots, clones, thin provisioning, replication, deduplication,
etc

Storage Area Network

• Common in large storage environments

• Multiple hosts attached to multiple storage arrays - flexible

Storage Area Network (Cont.)

• SAN is one or more storage arrays

– Connected to one or more Fibre Channel switches

• Hosts also attach to the switches

• Storage made available via LUN Masking from specific arrays to
specific servers

• Easy to add or remove storage, add new host and allocate it storage

– Over low-latency Fibre Channel fabric

• Why have separate storage networks and communications
networks?

– Consider iSCSI, FCOE

Network-Attached Storage

• Network-attached storage (NAS) is storage made available over a
network rather than over a local connection (such as a bus)

– Remotely attaching to file systems

• NFS and CIFS are common protocols

• Implemented via remote procedure calls (RPCs) between host and
storage over typically TCP or UDP on IP network

• iSCSI protocol uses IP network to carry the SCSI protocol

– Remotely attaching to devices (blocks)

Disk Scheduling

• The operating system is responsible for using hardware efficiently —
for the disk drives, this means having a fast access time and disk
bandwidth

• Minimize seek time

• Seek time  seek distance

• Disk bandwidth is the total number of bytes transferred, divided by
the total time between the first request for service and the
completion of the last transfer

Disk Scheduling (Cont.)

• There are many sources of disk I/O request

– OS

– System processes

– Users processes

• I/O request includes input or output mode, disk address, memory
address, number of sectors to transfer

• OS maintains queue of requests, per disk or device

• Idle disk can immediately work on I/O request, busy disk means work
must queue

– Optimization algorithms only make sense when a queue exists

Disk Scheduling (Cont.)

• Note that drive controllers have small buffers and can manage a queue
of I/O requests (of varying “depth”)

• Several algorithms exist to schedule the servicing of disk I/O requests

• The analysis is true for one or many platters

• We illustrate scheduling algorithms with a request queue (0-199)

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

FCFS

Illustration shows total head movement of 640 cylinders

SSTF

• Shortest Seek Time First selects the request with the minimum seek
time from the current head position

• SSTF scheduling is a form of SJF scheduling; may cause starvation of
some requests

• Illustration shows total head movement of 236 cylinders

SCAN

• The disk arm starts at one end of the disk, and moves toward the other
end, servicing requests until it gets to the other end of the disk, where
the head movement is reversed and servicing continues.

• SCAN algorithm Sometimes called the elevator algorithm

• Illustration shows total head movement of 236 cylinders

• But note that if requests are uniformly dense, largest density at other
end of disk and those wait the longest

SCAN (Cont.)

C-SCAN

• Provides a more uniform wait time than SCAN

• The head moves from one end of the disk to the other, servicing
requests as it goes

– When it reaches the other end, however, it immediately returns
to the beginning of the disk, without servicing any requests on
the return trip

• Treats the cylinders as a circular list that wraps around from the last
cylinder to the first one

• Total number of cylinders?

C-SCAN (Cont.)

C-LOOK

• LOOK a version of SCAN, C-LOOK a version of C-SCAN

• Arm only goes as far as the last request in each direction, then
reverses direction immediately, without first going all the way to
the end of the disk

• Total number of cylinders?

C-LOOK (Cont.)

Selecting a Disk-Scheduling Algorithm

• SSTF is common and has a natural appeal

• SCAN and C-SCAN perform better for systems that place a heavy load on the
disk

– Less starvation

• Performance depends on the number and types of requests

• Requests for disk service can be influenced by the file-allocation method

– And metadata layout

• The disk-scheduling algorithm should be written as a separate module of the
operating system, allowing it to be replaced with a different algorithm if
necessary

• Either SSTF or LOOK is a reasonable choice for the default algorithm

• What about rotational latency?

– Difficult for OS to calculate

• How does disk-based queueing effect OS queue ordering efforts?

Disk Management

• Low-level formatting, or physical formatting — Dividing a disk into sectors that
the disk controller can read and write

– Each sector can hold header information, plus data, plus error correction
code (ECC)

– Usually 512 bytes of data but can be selectable

• To use a disk to hold files, the operating system still needs to record its own data
structures on the disk

– Partition the disk into one or more groups of cylinders, each treated as a
logical disk

– Logical formatting or “making a file system”

– To increase efficiency most file systems group blocks into clusters

• Disk I/O done in blocks

• File I/O done in clusters

Disk Management (Cont.)

• Raw disk access for apps that want to do their own block
management, keep OS out of the way (databases for example)

• Boot block initializes system

– The bootstrap is stored in ROM

– Bootstrap loader program stored in boot blocks of boot partition

• Methods such as sector sparing used to handle bad blocks

Booting from a Disk in Windows

Swap-Space Management

• Swap-space — Virtual memory uses disk space as an extension of main memory

– Less common now due to memory capacity increases

• Swap-space can be carved out of the normal file system, or, more commonly, it can be in a
separate disk partition (raw)

• Swap-space management

– 4.3BSD allocates swap space when process starts; holds text segment (the program)
and data segment

– Kernel uses swap maps to track swap-space use

– Solaris 2 allocates swap space only when a dirty page is forced out of physical
memory, not when the virtual memory page is first created

• File data written to swap space until write to file system requested

• Other dirty pages go to swap space due to no other home

• Text segment pages thrown out and reread from the file system as needed

• What if a system runs out of swap space?

• Some systems allow multiple swap spaces

