
ATME COLLEGE OF ENGINEERING
13th KM Stone, Bannur Road, Mysore - 560 028

DEPARTMENT OF COMPUTER SCIENCE & DESIGN

(ACADEMIC YEAR 2024)

 LABORATORY MANUAL

SUBJECT: OPERATING SYSTEMS

 SUB CODE: BCS303

SEMESTER: III-2024 CBCS Scheme

 Composed by

 Verified by

Approved by

Mr. Mahadevaswamy

 Ms. DARSHINI Y

 Dr. Nasreen Fathima

PROGRAMMER FACULTY CO-ORDINATOR HOD, CS&DESIGN

INSTITUTIONAL MISSION AND VISION

Objectives

 To provide quality education and groom top-notch professionals, entrepreneurs

andleaders for different fields of engineering, technology and management.

 To open a Training-R & D-Design-Consultancy cell in each department,

gradually introduce doctoral and postdoctoral programs, encourage basic &

applied research in areas of social relevance, and develop the institute as a center

of excellence.

 To develop academic, professional and financial alliances with the industry as

well asthe academia at national and transnational levels.

 To cultivate strong community relationships and involve the students and the staff

inlocal community service.

 To constantly enhance the value of the educational inputs with the participation of

students, faculty, parents and industry.

Vision

 Development of academically excellent, culturally vibrant, socially

responsible andglobally competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive

and capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow’s

society.

 To strive to attain ever-higher benchmarks of educational excellence

OPERATING SYSTEMS Semester 3

Course Code BCS303 CIE Marks 50

Teaching Hours/Week (L:T:P: S) 3:0:2:0 SEE Marks 50

Total Hours of Pedagogy 40 hours Theory + 20 hours practicals Total Marks 100

Credits 04 Exam Hours 3

Examination nature (SEE) Theory

Sl.NO Experiments

1 Develop a c program to implement the Process system calls (fork (), exec(), wait(), create process,terminate

process)

2 Simulate the following CPU scheduling algorithms to find turnaround time and waiting time a) FCFS
b) SJF c) Round Robin d) Priority.

3 Develop a C program to simulate producer-consumer problem using semaphores.

4 Develop a C program which demonstrates interprocess communication between a reader
process and a writer process. Use mkfifo, open, read, write and close APIs in your program.

5
Develop a C program to simulate Bankers Algorithm for DeadLock Avoidance.

6 Develop a C program to simulate the following contiguous memory allocation Techniques:

a) Worst fit b) Best fit c) First fit.

7 Develop a C program to simulate page replacement algorithms:

a) FIFO b) LRU

8 Simulate following File Organization Techniques

a) Single level directory b) Two level directory

9 Develop a C program to simulate the Linked file allocation strategies.

10 Develop a C program to simulate SCAN disk scheduling algorithm.

Course outcomes (Course Skill Set):

At the end of the course, the student will be able to:

CO 1. Explain the structure and functionality of operating system

CO 2. Apply appropriate CPU scheduling algorithms for the given problem.

CO 3. Analyse the various techniques for process synchronization and deadlock handling.

CO 4. Apply the various techniques for memory management

CO 5. Explain file and secondary storage management strategies.

CO 6. Describe the need for information protection mechanisms

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The

minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum

passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed tohave satisfied

the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum

of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End

Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

● IPCC means practical portion integrated with the theory of the course.

● CIE marks for the theory component are 25 marks and that for the practical component is 25 marks.

● 25 marks for the theory component are split into 15 marks for two Internal Assessment Tests (Two Tests,

each of 15 Marks with 01-hour duration, are to be conducted) and 10 marks for other assessment methods

mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second testafter

covering 85-90% of the syllabus.

● Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory

component of IPCC (that is for 25 marks).

● The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC.

CIE for the practical component of the IPCC

● 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test

to be conducted after the completion of all the laboratory sessions.

● On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-

voce and marks shall be awarded on the same day.

● The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluationof

the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments’ write-

ups are added and scaled down to 15 marks.

● The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50

marks and scaled down to 10 marks.

● Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component

of IPCC for 25 marks.

● The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC.

SEE for IPCC

Theory SEE will be conducted by University as per the scheduled timetable, with common question papers forthe

course (duration 03 hours)

1. The question paper will have ten questions. Each question is set for 20 marks.

2. There will be 2 questions from each module. Each of the two questions under a module (with a maximumof

3 sub-questions), should have a mix of topics under that module.

3. The students have to answer 5 full questions, selecting one full question from each module.

4. Marks scoredby the student shall be proportionally scaled down to 50 Marks

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a

CIE component only. Questions mentioned in the SEE paper may include questions from the practical

component.

Suggested Learning Resources:

Textbooks

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 8th edition,

Wiley-India, 2015

Reference Books

1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage Learning, 6th Edition

2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd Ed, McGraw- Hill, 2013.

3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition, PHI(EEE),

2014.

4. William Stallings Operating Systems: Internals and Design Principles, 6th Edition, Pearson.

Web links and Video Lectures (e-Resources):

1. https://youtu.be/mXw9ruZaxzQ

2. https://youtu.be/vBURTt97EkA

3. https://www.youtube.com/watch?v=783KAB-

tuE4&list=PLIemF3uozcAKTgsCIj82voMK3TMR0YE_f

4. https://www.youtube.com/watch?v=3-

ITLMMeeXY&list=PL3pGy4HtqwD0n7bQfHjPnsWzkeRn6mkO

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

● Assessment Methods

o Case Study on Unix Based Systems (10 Marks)

o Lab Assessment (25 Marks)

https://youtu.be/mXw9ruZaxzQ
https://youtu.be/vBURTt97EkA
http://www.youtube.com/watch?v=783KAB-
http://www.youtube.com/watch?v=783KAB-
http://www.youtube.com/watch?v=3-
http://www.youtube.com/watch?v=3-

CONTENTS

Sl.No. EXPERIMENT NAME Page No.

1. Introduction 1-6

2.
Program 1 : Develop a c program to implement the Process system

calls (fork (), exec(), wait(), create process,terminate process)

7-16

3.

Program 2 : Simulate the following CPU scheduling algorithms to

find turnaround time and waiting time a) FCFS b) SJF c) Round

Robin d) Priority.

17-37

4.

Program 3 : Develop a C program to simulate producer-consumer

problem using semaphores.
38-44

5.

Program 4 : Develop a C program which demonstrates

interprocess communication between a reader process and a writer

process. Use mkfifo, open, read, write and close APIs in your

program.

45-48

6.

Program 5: Develop a C program to simulate Bankers Algorithm

for DeadLock Avoidance.
49-53

7.

Program 6 : Develop a C program to simulate the following

contiguous memory allocation Techniques:

a) Worst fit b) Best fit c) First fit.

54-62

8.

Program 7 : Develop a C program to simulate page replacement

algorithms: a) FIFO b) LRU
63-74

9.

Program 8 : Simulate following File Organization Techniques

a) Single level directory b) Two level directory

75-85

10.

Program 9 : Develop a C program to simulate the Linked file

allocation strategies.
86-97

11.

Program 10 : Develop a C program to simulate SCAN disk

scheduling algorithm.
98-101

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 1

Introduction to Operating System

Installation of Operating system (Linux/Ubuntu)

Perform a case study by installing and exploring various types of operating systems on a physical or

logical (virtual) machine. (Linux Installation). Instructions to Install Ubuntu Linux 18.04 (LTS) along

with Windows Back Up Your Existing Data!

This is highly recommended that you should take backup of your entire data before start with the

installation process.

Obtaining System Installation Media

Download latest Desktop version of Ubuntu from this link:

https://ubuntu.com/tutorials/install-ubuntu-desktop-1804#download

Booting the Installation System

There are several ways to boot the installation system. Some of the very popular ways are, booting

from a CD ROM, booting from a USB memory stick, and booting from TFTP.

Here we will learn how to boot installation system using a CD ROM.

Before booting the installation system, one need to change the boot order and set CD-ROM as first

boot device.

Changing the Boot Order of a Computers

As your computer starts, press the DEL-F10, HP-F9 during the initial startup screen. Depending on the

BIOS manufacturer, a menu may appear. However, consult the hardware documentation for the exact

key strokes.

Beneath the installation-type question are two checkboxes; one to enable updates while installing and

another to enable third-party software.

 We advise enabling both Download updates and Install third-party software.

 Stay connected to the internet so you can get the latest updates while you install Ubuntu.

https://ubuntu.com/tutorials/install-ubuntu-desktop-1804#download

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 2

 If you are not connected to the internet, you will be asked to select a wireless network, if

available. We advise you to connect during the installation so we can ensure your machine is

up to date.

Allocate drive space

Use the checkboxes to choose whether you’d like to install Ubuntu alongside another operating

system, delete your existing operating system and replace it with Ubuntu, or — if you’re an advanced

user — choose the ’Something else’ option.

https://ubuntucommunity.s3-us-east-2.amazonaws.com/original/2X/3/32da76fd45eb5300065df0491ec85a0ab3e6e380.png

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 3

Begin installation

After configuring storage, click on the ‘Install Now’ button. A small pane will appear with an

overview of the storage options you’ve chosen, with the chance to go back if the details are incorrect.

Click Continue to fix those changes in place and start the installation process.

https://ubuntucommunity.s3-us-east-2.amazonaws.com/original/2X/f/f696c2cfd147a5613f1061cf9104c30f03748344.png
https://ubuntucommunity.s3-us-east-2.amazonaws.com/original/2X/4/46e9947d7b4ad3e96487d81cf61c327485d56b5a.png

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 4

Select your location

If you are connected to the internet, your location will be detected automatically. Check your location

is correct and click ’Forward’ to proceed.

If you’re unsure of your time zone, type the name of a local town or city or use the map to select your

location.

Positive: If you’re having problems connecting to the Internet, use the menu in the top-right-hand

corner to select a network.

Login details

Enter your name and the installer will automatically suggest a computer name and username. These

can easily be changed if you prefer. The computer name is how your computer will appear on the

network, while your username will be your login and account name.

https://ubuntucommunity.s3-us-east-2.amazonaws.com/original/2X/1/1f7d6ccbc18537a79f4af833d124dc096ef70459.png

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 5

Next, enter a strong password. The installer will let you know if it’s too weak.

You can also choose to enable automatic login and home folder encryption. If your machine is

portable, we recommend keeping automatic login disabled and enabling encryption. This should stop

people accessing your personal files if the machine is lost or stolen.

:

If you enable home folder encryption and you forget your password, you won’t be able to retrieve any

personal data stored in your home folder.

Background installation

The installer will now complete in the background while the installation window teaches you a little

about how awesome Ubuntu is. Depending on the speed of your machine and network connection,

installation should only take a few minutes.

https://ubuntucommunity.s3-us-east-2.amazonaws.com/original/2X/f/fe3e195347fdb45feab534796348384a41b918e7.png

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 6

Installation complete

After everything has been installed and configured, a small window will appear asking you to restart

your machine. Click on Restart Now and remove either the DVD or USB flash drive when prompted.

If you initiated the installation while testing the desktop, you also get the option to continue testing.

Congratulations! You have successfully installed the world’s most popular Linux operating system!

It’s now time to start enjoying Ubuntu!

https://ubuntucommunity.s3-us-east-2.amazonaws.com/original/2X/2/29ec0f5c3d8c5b51f7b7440c4e2a95cc9f4a0118.png

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 7

PROGRAM 1:

Develop a c program to implement the Process system calls (fork (), exec(), wait(),

create process, terminate process)

System Calls:

The interface between a process and an operating system is provided by system calls. In general,

system calls are available as assembly language instructions. They are also included in the manuals

used by the assembly level programmers. System calls are usually made when a process in user mode

requires access to a resource. Then it requests the kernel to provide the resource via a system call.

A figure representing the execution of the system call is given as follows −

In general, system calls are required in the following situations −

 If a file system requires the creation or deletion of files. Reading and writing from files also require

a system call.

 Creation and management of new processes.

 Network connections also require system calls. This includes sending and receiving packets.

 Access to a hardware devices such as a printer, scanner etc. requires a system call

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 8

Types of System Calls

There are mainly five types of system calls. These are explained in detail as follows −

Process Control

These system calls deal with processes such as process creation, process termination etc.

File Management

These system calls are responsible for file manipulation such as creating a file, reading a file, writing

into a file etc.

Device Management

These system calls are responsible for device manipulation such as reading from device buffers,

writing into device buffers etc.

Information Maintenance

These system calls handle information and its transfer between the operating system and the user

program.

Communication

These system calls are useful for interprocess communication. They also deal with creating and

deleting a communication connection.

fork ()

Used to create new process. The new process consists of a copy of the address space of the

original process. The value of process id for the child process is zero, whereas the value of process id

for the parent is an integer value greater than zero.

Syntax: fork ();

wait ()

The parent waits for the child process to complete using the wait system call. The wait system call

returns the process identifier of a terminated child, so that the parent can tell which of its possibly

many children has terminated.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 9

Syntax: wait (NULL);

exit ()

A process terminates when it finishes executing its final statement and asks the operating

system to delete it by using the exit system call. At that point, the process may return data (output) to

its parent process (via the wait system call).

Syntax: exit (0)

Fork () System Call:

AIM: To write the program to implement fork () system call.

DESCRIPTION:

Used to create new processes. The new process consists of a copy of the address space of the original

process. The value of process id for the child process is zero, whereas the value of process id for the

parent is an integer value greater than zero.

Syntax: Fork ();

ALGORITHM:

Step 1: Start the program.

Step 2: Declare the variables pid and child id.

Step 3: Get the child id value using system call fork().

Step 4: If child id value is greater than zero then print as “i am in the parent process”.

Step 5: If child id! = 0 then using getpid() system call get the process id.

Step 6: Print “i am in the parent process” and print the process id.

Step 7: If child id! = 0 then using getppid() system call get the parent process id.

Step 8: Print “i am in the parent process” and print the parent process id.

Step 9: Else If child id value is less than zero then print as “i am in the child process”.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 10

Step 10: If child id! = 0 then using getpid() system call get the process id.

Step 11: Print “i am in the child process” and print the process id.

Step 12: If child id! = 0 then using getppid() system call get the parent process id.

Step 13: Print “i am in the child process” and print the parent process id.

Step 14: Stop the program

PROGRAM :

SOURCE CODE:

/* fork system call */

#include<stdio.h>

#include <unistd.h>

#include<sys/types.h>

int main()

{

int id,childid;

id=getpid();

if((childid=fork())>0)

{

printf("\n i am in the parent process %d",id);

printf("\n i am in the parent process %d",getpid());

printf("\n i am in the parent process %d\n",getppid());

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 11

else

{

printf("\n i am in child process %d",id);

printf("\n i am in the child process %d",getpid());

printf("\n i am in the child process %d",getppid());

}

}

OUTPUT:

$ gedit fork.c

$ cc fork.c

$./a.out

i am in child process 3765

i am in the child process 3766

i am in the child process 3765

i am in the parent process 3765

i am in the parent process 3765

i am in the parent process 3680

RESULT:

Thus the program was executed and verified successfully.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 12

ALGORITHM:

Step 1: Start the program.

Step 2: Declare the variables pid and i as integers.

Step 3: Get the child id value using the system call fork ().

Step 4: If child id value is less than zero then print “fork failed”.

Step 5: Else if child id value is equal to zero, it is the id value of the child and then start the child

process to execute and perform Steps 7 & 8.

Step 6: Else perform Step 9.

Step 7: Use a for loop for almost five child processes to be called.

Step 8: After execution of the for loop then print “child process ends”.

Step 9: Execute the system call wait () to make the parent to wait for the child process to get over.

Step 10: Once the child processes are terminated, the parent terminates and hence prints “Parent

process ends”.

Step 11: After both the parent and the child processes get terminated it execute the wait () system call

to permanently get deleted from the OS.

Step 12: Stop the program.

SOURCE CODE:

/* wait system call */

#include <stdlib.h>

#include <errno.h>

#include<stdio.h>

#include <unistd.h>

#include <sys/types.h>

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 13

#include <sys/wait.h>

main()

{

pid_t pid;

int rv;

switch(pid=fork())

{

case -1:

perror("fork");

exit(1);

case 0:

printf("\n CHILD: This is the child process!\n");

fflush(stdout);

printf("\n CHILD: My PID is %d\n", getpid());

printf("\n CHILD: My parent's PID is %d\n",getppid());

printf("\n CHILD: Enter my exit status (make it small):\n ");

printf("\n CHILD: I'm outta here!\n");

scanf(" %d", &rv);

exit(rv);

default:

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 14

printf("\nPARENT: This is the parent process!\n");

printf("\nPARENT: My PID is %d\n", getpid());

fflush(stdout);

wait(&rv);

fflush(stdout);

printf("\nPARENT: My child's PID is %d\n", pid);

printf("\nPARENT: I'm now waiting for my child to exit()...\n");

fflush(stdout);

printf("\nPARENT: My child's exit status is:

%d\n",WEXITSTATUS(rv));

printf("\nPARENT: I'm outta here!\n");

}

}

OUTPUT:

$ gedit wait.c

$ cc wait.c

$./a.out

CHILD: This is the child process!

CHILD: My PID is 3821

CHILD: My parent's PID is 3820

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 15

CHILD: Enter my exit status (make it small):

CHILD: I'm outta here!

PARENT: This is the parent process!

PARENT: My PID is 3820

10

PARENT: My child's PID is 3821

PARENT: I'm now waiting for my child to exit()...

PARENT: My child's exit status is: 10

PARENT: I'm outta here!

Exec()

In execl() function, the parameters of the executable file is passed to the function as different

arguments. With execv(), you can pass all the parameters in a NULL terminated array argv. The first

element of the array should be the path of the executable file. Otherwise, execv() function works just

as execl() function.

Syntax:int execv (const char *path, char *const argv[]);

ALGORITHM:

Step 1: Start the program.

Step 2: Include the necessary header files.

Step 3: Print execution of exec system call for the ls Unix command.

Step 4: Execute the execv function using the appropriate syntax for the Unix command ls.

Step 5: The list of all files and directories of the system is displayed.

Step 6: Stop the program.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 16

PROGRAM :

SOURCE CODE:

/* execv system call */

#include<stdio.h>

#include<sys/types.h>

main(int argc,char *argv[])

{

printf("before execv\n");

execv("/bin/ls",argv);

printf("after execv\n");

}

OUTPUT:

$ gedit execv.c

$ cc execv.c

$./a.out

before execv

a1 aaa aaa.txt abc a.out b1 b2 comm.c db db1 demo2 dir1 direc.c execl.c execv.c f1.txt

fflag.c file1 file2 fork.c m1 m2 wait.c xyz

RESULT:

Thus the program was executed and verified successfully

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 17

PROGRAM 2:

Simulate the following CPU scheduling algorithms to find turnaround time and

waiting time a) FCFS b) SJF c) Round Robin d) Priority.

CPU Scheduling Algorithms:

Scheduling of processes/work is done to finish the work on time.

Below are different times with respect to a process.

Arrival Time : Time at which the process arrives in the ready queue.

Completion Time : Time at which process completes its execution.

Burst Time : Time required by a process for CPU execution.

Turn Around Time : Time Difference between completion time and arrival time.

Turn Around Time = Completion Time - Arrival Time

Waiting Time(W.T) : Time Difference between turn around time and burst time.

Waiting Time = Turn Around Time - Burst Time

Why do we need scheduling?

A typical process involves both I/O time and CPU time. In a uniprogramming system like MS DOS,

time spent waiting for I/O is wasted and CPU is free during this time. In multiprogramming systems,

one process can use CPU while another is waiting for I/O. This is possible only with process

scheduling.

Objectives of Process Scheduling Algorithm

 Max CPU utilization [Keep CPU as busy as possible]

 Fair allocation of CPU.

 Max throughput [Number of processes that complete their execution per time unit]

 Min turnaround time [Time taken by a process to finish execution]

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 18

 Min waiting time [Time a process waits in ready queue]

 Min response time [Time when a process produces first response]

Different Scheduling Algorithms:

First Come First Serve (FCFS): Simplest scheduling algorithm that schedules according to arrival

times of processes. First come first serve scheduling algorithm process that requests the CPU first is

allocated the CPU first. It is implemented by using the FIFO queue. When a process enters the ready

queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to the process

at the head of the queue. The running process is then removed from the queue. FCFS is a non –

preemptive scheduling algorithm.

Note: First come first serve suffers from convoy effect.

Shortest Job First (SJF): Process which has the shortest burst time is scheduled first. If two

processes have the same bust time, then FCFS is used to break the tie. It is a non-preemptive

scheduling algorithm

AIM: To write a C program to implement FCFS CPU scheduling algorithm.

DESCRIPTION:

 Jobs are executed on FCFS (First Come, First Serve) basis.

 It is a non-preemptive, preemptive scheduling algorithm.

 Easy to understand and implement.

 Its implementation is based on FIFO (First In First Out) queue.

 Poor in performance as average wait time is high.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 19

Wait time of each process is as follows –

Process Wait Time : Service Time - Arrival Time

P0 0 - 0 = 0

P1 5 - 1 = 4

P2 8 - 2 = 6

P3 16 -3=16

Average Wait Time: (0+4+6+13) / 4 = 5.75

ALGORITHM:

Step 1: Start the program.

Step 2: Create the number of process.

Step 3: Get the ID and Service time for each process.

Step 4: Initially, Waiting time of first process is zero and Total time for the first process is the

starting time of that process.

Step 5: Calculate the Total time and Processing time for the remaining processes.

Step 6: Waiting time of one process is the Total time of the previous process.

Step 7: Total time of process is calculated by adding Waiting time and Service time.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 20

Step 8: Total waiting time is calculated by adding the waiting time for lack process.

Step 9: Total turn around time is calculated by adding all total time of each process.

Step 10: Calculate Average waiting time by dividing the total waiting time by total number of

process.

Step 11: Calculate Average turn around time by dividing the total time by the number of process.

Step 12: Display the result.

Step 13: Stop the program.

PROGRAM:

SOURCE CODE:

/* A program to simulate the FCFS CPU scheduling algorithm */

#include<stdio.h>

int main()

{

char pn[10][10];

int arr[10],bur[10],star[10],finish[10],tat[10],wt[10],i,n;

int totwt=0,tottat=0;

printf("Enter the number of processes:");

scanf("%d",&n);

for(i=0;i<n;i++)

{

printf("Enter the Process Name, Arrival Time & Burst Time:");

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 21

scanf("%s%d%d",&pn[i],&arr[i],&bur[i]);

}

for(i=0;i<n;i++)

{

if(i==0)

{

star[i]=arr[i];

wt[i]=star[i]-arr[i];

finish[i]=star[i]+bur[i];

tat[i]=finish[i]-arr[i];

}

else

{

star[i]=finish[i-1];

wt[i]=star[i]-arr[i];

finish[i]=star[i]+bur[i];

tat[i]=finish[i]-arr[i];

}

}

printf("\nPName Arrtime Burtime Start TAT Finish");

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 22

for(i=0;i<n;i++)

{

printf("\n%s\t%6d\t\t%6d\t%6d\t%6d\t%6d",pn[i],arr[i],bur[i],star[i],tat[i],finish[i]);

totwt+=wt[i];

tottat+=tat[i];

}

printf("\nAverage Waiting time:%f", (float)totwt);

printf("\nAverage Turn Around Time:%f", (float)tottat);

}

OUTPUT:

$ cc fcfs.c

$./a.out

Enter the number of processes: 3

Enter the Process Name, Arrival Time & Burst Time: 1 2 3

Enter the Process Name, Arrival Time & Burst Time: 2 5 6

Enter the Process Name, Arrival Time & Burst Time: 3 6 7

PName Arrtime Burtime Start TAT Finish

1 2 3 2 3 5

2 5 6 5 6 11

3 6 7 11 12 18

Average Waiting time: 1.666667

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 23

Average Turn Around Time: 7.000000

/* A program to simulate the SJF CPU scheduling algorithm */

AIM:To write a C program to implement SJF CPU scheduling algorithm.

DESCRIPTION:

 This is also known as shortest job first, or SJF

 This is a non-preemptive, pre-emptive scheduling algorithm.

 Best approach to minimize waiting time.

 Easy to implement in Batch systems where required CPU time is known in advance.

 Impossible to implement in interactive systems where required CPU time is not known.

 The processer should know in advance how much time process will take. Given: Table of

Process

Arrival Time

Execution Time

Service Time

P0 0 5 0

P1 1 3 5

P2 2 8 14

P3 3 6 8

time

Waiting time of each process is as follows –

proc

esses

, and

their

Arriv

al

time,

Exec

ution

Process Waiting Time

P0 0-0=0

P1 5 - 1 = 4

P2 14 - 2 = 12

P3 8 - 3 = 5

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 24

Average Wait Time: (0 + 4 +12 + 5)/4 = 21 / 4=5.25

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of process.

Step 3: Get the id and service time for each process.

Step 4: Initially the waiting time of first short process as 0 and total time of first short is process the

service time of that process.

Step 5: Calculate the total time and waiting time of remaining process.

Step 6: Waiting time of one process is the total time of the previous process.

Step 7: Total time of process is calculated by adding the waiting time and service time of each process.

Step 8: Total waiting time calculated by adding the waiting time of each process.

Step 9: Total turn around time calculated by adding all total time of each process.

Step 10: Calculate average waiting time by dividing the total waiting time by total number of process.

Step 11: Calculate average turn around time by dividing the total waiting time by total number of

process.

Step 12: Display the result.

Step 13: Stop the program.

PROGRAM:

SOURCE CODE: /* A program to simulate the SJF CPU scheduling algorithm */

#include<stdio.h>

#include<string.h>

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 25

Void main()

{

int i=0,pno[10],bt[10],n,wt[10],temp=0,j,tt[10];

float sum,at;

printf("\n Enter the no of process ");

scanf("\n %d",&n);

printf("\n Enter the burst time of each process");

for(i=0;i<n;i++) { printf("\n p%d",i);

scanf("%d",&bt[i]);

}

for(i=0;i<n-1;i++)

{

for(j=i+1;j<n;j++)

{

if(bt[i]>bt[j])

{

temp=bt[i];

bt[i]=bt[j];

bt[j]=temp;

temp=pno[i];

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 26

pno[i]=pno[j];

pno[j]=temp;

} } }

wt[0]=0;

for(i=1;i<n;i++)

{

wt[i]=bt[i-1]+wt[i-1];

sum=sum+wt[i];

}

printf("\n process no \t burst time\t waiting time \t turn around time\n");

for(i=0;i<n;i++)

{

tt[i]=bt[i]+wt[i];

at+=tt[i];

printf("\n p%d\t\t%d\t\t%d\t\t%d",i,bt[i],wt[i],tt[i]);

}

printf("\n\n\t Average waiting time%f\n\t Average turn around time%f", sum, at);

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 27

OUTPUT:

$ cc sjf.c

$./a.out

Enter the no of process 5

Enter the burst time of each process

p0 1

p1 5

p2 2

p3 3

p4 4

process no

burst time

waiting time

turn around time

p0 1 0 1

p1 2 1 3

p2 3 3 6

p3 4 6 10

p4 5 10 15

Average waiting time 4.000000

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 28

Average turn around time 7.000000

RESULT: Thus the program was executed and verified successfully.

Write C program to simulate Round Robin CPU scheduling algorithm.

AIM: To write a C program to implement Round Robin CPU scheduling algorithm.

DESCRIPTION

 Round Robin is the preemptive process scheduling algorithm.

 Each process is provided a fix time to execute, it is called a quantum.

 Once a process is executed for a given time period, it is preempted and other process executes

for a given time period.

 Context switching is used to save states of preempted processes.

ALGORITHM:

Step 1: Start the program.

Step 2: Initialize all the structure elements.

Step 3: Receive inputs from the user to fill process id, burst time and arrival time.

Step 4: Calculate the waiting time for all the process id.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 29

i. The waiting time for first instance of a process is calculated as: a[i].waittime=count +

a[i].arrivt.

ii. The waiting time for the rest of the instances of the process is calculated as:

a) If the time quantum is greater than the remaining burst time then waiting time is calculated as:

a[i].waittime=count + tq.

b) Else if the time quantum is greater than the remaining burst time then waiting time is

calculated as: a[i].waittime=count - remaining burst time

Step 5: Calculate the average waiting time and average turnaround time

Step 6: Print the results of the step 4.

Step 7: Stop the program.

PROGRAM :

SOURCE CODE:

/* A program to simulate the Round Robin CPU scheduling algorithm */

#include<stdio.h>

struct process

{

int burst,wait,comp,f;

}p[20]={0,0};

int main()

{

int n,i,j,totalwait=0,totalturn=0,quantum,flag=1,time=0;

printf("\nEnter The No Of Process :");

scanf("%d",&n);

printf("\nEnter The Quantum time (in ms) :");

scanf("%d",&quantum);

for(i=0;i<n;i++)

{

printf("Enter The Burst Time (in ms) For Process #%2d :",i+1);

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 30

scanf("%d",&p[i].burst);

p[i].f=1;

}

printf("\nOrder Of Execution \n");

printf("\nProcess Starting Ending Remaining");

printf("\n\t\tTime \tTime \t Time");

while(flag==1)

{

flag=0; for(i=0;i<n;i++)

{

if(p[i].f==1)

{

flag=1; j=quantum;

if((p[i].burst-p[i].comp)>quantum)

{

p[i].comp+=quantum;

}

else

{ p[i].wait=time-p[i].comp;

j=p[i].burst-p[i].comp;

p[i].comp=p[i].burst;

p[i].f=0;

}

printf("\nprocess # %-3d %-10d %-10d %-10d", i+1, time, time+j, p[i].burst-

p[i].comp);

time+=j;

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 31

}

}

}

printf("\n\n ");

printf("\nProcess \t Waiting Time TurnAround Time ");

for(i=0;i<n;i++)

{

printf("\nProces%-12d%-15d%-15d",i+1,p[i].wait,p[i].wait+p[i].burst);

totalwait=totalwait+p[i].wait;

totalturn=totalturn+p[i].wait+p[i].burst;

}

printf("\n\nAverage\n ------------------- ");

printf("\nWaiting Time: %fms",totalwait/(float)n); p

rintf("\nTurnAround Time : %fms\n\n",totalturn/(float)n);

return 0;

}

OUTPUT:

$ cc rr.c

$./a.out

Enter The No Of Process: 3

Enter The Quantum time (in ms): 5

Enter The Burst Time (in ms) For Process # 1: 25

Enter The Burst Time (in ms) For Process # 2: 30

Enter The Burst Time (in ms) For Process # 3: 54

Order Of Execution

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 32

Process Starting Ending Remaining

Time Time Time

process # 1 0 5 20

process # 2 5 10 25

process # 3 10 15 49

process # 1 15 20 15

process # 2 20 25 20

process # 3 25 30 44

process # 1 30 35 10

process # 2 35 40 15

process # 3 40 45 39

process # 1 45 50 5

process # 2 50 55 10

process # 3 55 60 34

process # 1 60 65 0

process # 2 65 70 5

process # 3 70 75 29

process # 2 75 80 0

process # 3 80 85 24

process # 3 85 90 19

process # 3 90 95 14

process # 3 95 100 9

Process # 3 100 105 4

process # 3 105 109 0

Process Waiting Time TurnAround Time

Process # 1 40 65

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 33

Process # 2 50 80

Process # 3 55 109

Average ------------------ Waiting Time: 48.333333ms

TurnAround Time: 84.666667ms

RESULT: Thus the program was executed and verified successfully.

PROGRAM :

SOURCE CODE:

/* A program to simulate the Priority scheduling algorithm */

Priority scheduling is a non-preemptive algorithm and one of the most common

scheduling algorithms in batch systems. Each process is assigned first arrival time

(less arrival time process first) if two processes have same arrival time, then compare

to priorities (highest process first). Also, if two processes have same priority then

compare to process number (less process number first). This process is repeated while

all process get executed.

Implementation –

 First input the processes with their arrival time, burst time and priority.

 First process will schedule, which have the lowest arrival time, if two or more

processes will have lowest arrival time, then whoever has higher priority will

schedule first.

 Now further processes will be schedule according to the arrival time and

priority of the process. (Here we are assuming that lower the priority number

having higher priority). If two process priority are same then sort according to

process number.

Note: In the question, They will clearly mention, which number will have

higher priority and which number will have lower priority.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 34

 Once all the processes have been arrived, we can schedule them based on their

priority.

Consider the below table for processes with their respective CPU burst times and the

priorities.

SOURCE CODE

#include<stdio.h>

void main()

{

int x,n,p[10],pp[10],pt[10],w[10],t[10],awt,atat,i;

printf("Enter the number of process : ");

scanf("%d",&n);

printf("\n Enter process : time priorities \n");

for(i=0;i<n;i++)

{

printf("\nProcess no %d : ",i+1);

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 35

scanf("%d %d",&pt[i],&pp[i]);

p[i]=i+1;

}

for(i=0;i<n-1;i++)

{

for(int j=i+1;j<n;j++)

{

if(pp[i]<pp[j])

{

x=pp[i];

pp[i]=pp[j];

pp[j]=x;

x=pt[i];

pt[i]=pt[j];

pt[j]=x;

x=p[i];

p[i]=p[j];

p[j]=x;

}

}

}

w[0]=0;

awt=0;

t[0]=pt[0];

atat=t[0];

for(i=1;i<n;i++)

{

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 36

w[i]=t[i-1];

awt+=w[i];

t[i]=w[i]+pt[i];

atat+=t[i];

}

printf("\n\n Job \t Burst Time \t Wait Time \t Turn Around Time Priority \n");

for(i=0;i<n;i++)

printf("\n %d \t\t %d \t\t %d \t\t %d \t\t %d \n",p[i],pt[i],w[i],t[i],pp[i]);

awt/=n;

atat/=n;

printf("\n Average Wait Time : %d \n",awt);

printf("\n Average Turn Around Time : %d \n",atat);

}

OUTPUT:

$ cc rr.c

$./a.out

Enter the number of process : 4

Enter process : time priorities

Process no 1 : 3 1

Process no 2 : 4 2

Process no 3 : 5 3

Process no 4 : 6 4

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 37

Job Burst Time Wait Time Turn Around Time Priority

4 6 0 6 4

3 5 6 11 3

2 4 11 15 2

1 3 15 18 1

Average Wait Time : 8

Average Turn Around Time : 12

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 38

PROGRAM 3:

Develop a C program to simulate producer-consumer problem using semaphores.

To solve the Producer-Consumer problem three semaphores variable are used :

Semaphores are variables used to indicate the number of resources available in the system at a

particular time. semaphore variables are used to achieve `Process Synchronization.

Full

The full variable is used to track the space filled in the buffer by the Producer process. It is initialized

to 0 initially as initially no space is filled by the Producer process.

Empty

The Empty variable is used to track the empty space in the buffer. The Empty variable is initially

initialized to the

BUFFER-SIZE as initially, the whole buffer is empty.

Mutex

Mutex is used to achieve mutual exclusion. mutex ensures that at any particular time only the

producer or the consumer is accessing the buffer.

Mutex - mutex is a binary semaphore variable that has a value of 0 or 1.

We will use the Signal() and wait() operation in the above-mentioned semaphores to arrive at a

solution to the Producer-Consumer problem.

Signal() - The signal function increases the semaphore value by 1.

Wait() - The wait operation decreases the semaphore value by 1.

PROGRAM

SOURCE CODE:

#include <stdio.h>

#include <stdlib.h>

int mutex = 1; // Initializing the mutex variable with the value 1.

int full = 0; // Initializing the full variable with the value 0.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 39

Int empty = 10, data = 0; // empty variable will store the number of empty slots in the

buffer

void producer()// A function that will resemble producers' production of data

{

--mutex; // decrementing the value of mutex

++full; // Increase the number of full slots

--empty; // decrementing the number of slots available

data++;// incrementing data which means that the data is produced

printf("\nProducer produces item number: %d\n", data);

++mutex; // incrementing the value of mutex

}

void consumer()// A function that will resemble the consumer's consumption of data

{

--mutex;

--full;

++empty;

printf("\nConsumer consumes item number: %d.\n", data);

data--;

++mutex;

}

int main()

{

int n, i;

printf("\n1. Enter 1 for Producer"

"\n2. Enter 2 for Consumer"

"\n3. Enter 3 to Exit");

for (i = 1; i > 0; i++)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 40

{

printf("\nEnter your choice: ");

scanf("%d", &n);

switch (n) // using switch case as there can be multiple types of choice.

{

case 1: if ((mutex == 1) && (empty != 0))

{

producer();

}

else

{

printf("The Buffer is full. New data cannot be produced!");

}

break;

case 2:

if ((mutex == 1) && (full != 0))

{

consumer();

}

else

{

printf("The Buffer is empty! New data cannot be consumed!");

}

break;

case 3:

exit(0);

break;

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 41

}

}

}

OUTPUT:

$ cc rr.c

$./a.out

1. Enter 1 for Producer
2. Enter 2 for Consumer

3. Enter 3 to Exit

Enter your choice: 1

Producer produces item number: 1

Enter your choice: 1

Producer produces item number: 2

Enter your choice: 1

Producer produces item number: 3

Enter your choice: 2

Consumer consumes item number: 3.

Enter your choice: 2

Consumer consumes item number: 2.

Enter your choice: 2

Consumer consumes item number: 1.

Enter your choice: 2

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 42

The buffer is empty! New data cannot be consumed!

Enter your choice: 1

Producer produces item number: 1

Enter your choice: 1

Producer produces item number: 2

Enter your choice: 1

Producer produces item number: 3

Enter your choice: 1

Producer produces item number: 4

Enter your choice: 1

Producer produces item number: 5

Enter your choice: 1

Producer produces item number: 6

Enter your choice: 1

Producer produces item number: 7

Enter your choice: 1

Producer produces item number: 8

Enter your choice: 1

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 43

Producer produces item number: 9

Enter your choice: 1

Producer produces item number: 10

Enter your choice: 1

The buffer is full. New data cannot be produced!

Enter your choice: 2

Consumer consumes item number: 10.

Enter your choice: 2

Consumer consumes item number: 9.

Enter your choice: 2

Consumer consumes item number: 8.

Enter your choice: 2

Consumer consumes item number: 7.

Enter your choice: 2

Consumer consumes item number: 6.

Enter your choice: 2

Consumer consumes item number: 5.

Enter your choice: 2

Consumer consumes item number: 4.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 44

Enter your choice: 2

Consumer consumes item number: 3.

Enter your choice: 2

Consumer consumes item number: 2.

Enter your choice: 2

consumer consumes item number: 1.

Enter your choice: 2

The buffer is empty! New data cannot be consumed!

Enter your choice: 2

The buffer is empty! New data cannot be consumed!

Enter your choice: 3

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 45

PROGRAM 4:

Develop a C program which demonstrates interprocess communication between

a reader process and a writer process. Use mkfifo, open, read, write and close

APIs in your program

In computing, a named pipe (also known as a FIFO) is one of the methods for inter-process

communication.

 It is an extension to the traditional pipe concept on Unix. A traditional pipe is “unnamed” and lasts

only as long as the process.

 A named pipe, however, can last as long as the system is up, beyond the life of the process. It can

be deleted if no longer used.

 Usually a named pipe appears as a file and generally processes attach to it for inter-process

communication. A FIFO file is a special kind of file on the local storage which allows two or more

processes to communicate with each other by reading/writing to/from this file.

 FIFO special file is entered into the filesystem by calling mkfifo() in C. Once we have created a

FIFO special file in this way, any process can open it for reading or writing, in the same way as an

ordinary file. However, it has to be open at both ends simultaneously before you can proceed to do

any input or output operations on it.

Creating a FIFO file: In order to create a FIFO file, a function calls i.e. mkfifo is used.

int mkfifo(const char *pathname, mode_t mode);

mkfifo() makes a FIFO special file with name pathname. Here mode specifies the FIFO’s

permissions. It is modified by the process’s umask in the usual way: the permissions of the created

file are (mode & ~umask).

Using FIFO: As named pipe(FIFO) is a kind of file, we can use all the system calls associated with it

i.e. open, read, write, close.

Example Programs to illustrate the named pipe: There are two programs that use the same FIFO.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 46

Program 1 writes first, then reads. The program 2 reads first, then writes. They both keep doing it

until terminated.

P1: Write First

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

int fd;

char * myfifo = "/tmp/myfifo";

mkfifo(myfifo, 0666);

char arr1[80], arr2[80];

while (1)

{

fd = open(myfifo, O_WRONLY);

fgets(arr2, 80, stdin);

write(fd, arr2, strlen(arr2)+1);

close(fd);

fd = open(myfifo, O_RDONLY);

read(fd, arr1, sizeof(arr1));

printf("User2: %s\n", arr1);

close(fd);

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 47

return 0;

}

P2: Read first

#include <stdio.h>

#include <string.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <unistd.h>

int main()

{

int fd1;

char * myfifo = "/tmp/myfifo";

mkfifo(myfifo, 0666);

char str1[80], str2[80];

while (1)

{

fd1 = open(myfifo,O_RDONLY);

read(fd1, str1, 80);

printf("User1: %s\n", str1);

close(fd1);

fd1 = open(myfifo,O_WRONLY);

fgets(str2, 80, stdin);

write(fd1, str2, strlen(str2)+1);

close(fd1);

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 48

return 0;

}

OUTPUT:

$ cc fifo1.c

$./a.out

Open two terminals and run the program

$ cc fifo2.c

$./a.out

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 49

PROGRAM 5:

Develop a C program to simulate Bankers Algorithm for DeadLock Avoidance.

DEAD LOCK AVOIDANCE

AIM: Simulate bankers algorithm for Dead Lock Avoidance (Banker‘s Algorithm)

DESCRIPTION:

Deadlock is a situation where in two or more competing actions are waiting f or the other to finish,

and thus neither ever does. When a new process enters a system, it must declare the maximum

number of instances of each resource type it needed. This number may exceed the total number of

resources in the system.

When the user request a set of resources, the system must determine whether the allocation of

each resources will leave the system in safe state. If it will the resources are allocation; otherwise the

process must wait until some other process release the resources.

Data structures Allocation:

If Allocation [i, j]=k, Pi allocated to k instances of resource Rj Need: If

Need[I, j]=k, Pi may need k more instances of resource type Rj, Need[I, j]=Max[I, j]-Allocation[I, j];

Safety Algorithm

Work and Finish be the vector of length m and n respectively,

Work=Available and Finish[i] =False.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 50

1. Find an i such that both

2. Finish[i] =False Need<=Work If no such I exists go to step 4.

3. work= work + Allocation, Finish[i] =True;

4. if Finish[1]=True for all I, then the system is in safe state. Resource request algorithm

Let Request i be request vector for the process Pi, If request i=[j]=k, then process Pi wants k

instances of resource type Rj.

1. if Request<=Need I go to step 2. Otherwise raise an error condition.

2. if Request<=Available go to step 3. Otherwise Pi must since the resources are available.

3. Have the system pretend to have allocated the requested resources to process Pi by modifying the

state as follows;

Available=Available-Request I; Allocation I=Allocation +Request I; Need i=Need i- Request I;

If the resulting resource allocation state is safe, the transaction is completed and process Pi is

allocated its resources. However if the state is unsafe, the Pi must wait for Request i and the old

resource-allocation state is restored.

ALGORITHM:

1. Start the program.

2. Get the values of resources and processes.

3. Get the avail value.

4. After allocation find the need value.

5. Check whether its possible to allocate.

6. If it is possible then the system is in safestate.

7. Else system is not in safety state.

8. If the new request comes then check that the system is in safety.

9. or not if we allow the request.

10. stop the program.

11. End.

SOURCE CODE:

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 51

#include<stdio.h>

#include<conio.h>

void main()

{

int work[5],avl[5],alloc[10][10],l;

int need[10][10],n,m,I,j,avail[10],max[10][10],k,count,i,fcount=0,pr[10];

char finish[10]={'f','f','f','f','f','f','f','f','f','f'};

printf("\n enter the no of process");

scanf("%d",&n);

printf("\n enter the no of resources");

scanf("%d",&m);

printf("\n enter the total no of resources");

for(i=1;i<=m;i++)

scanf("%d",&avail[i]);

printf("\n enter the max resources req by each pr alloc matrix");

for(i=1;i<=n;i++)

for(j=1;j<=m;j++)

scanf("%d",&max[i][j]);

printf("\n process allocation matrix");

for(i=1;i<=n;i++)

for(j=1;j<=m;j++)

scanf("%d",&alloc[i][j]);

for(i=1;i<=n;i++)

for(j=1;j<=m;j++)

need[i][j]=max[i][j]-alloc[i][j];

for(i=1;i<=n;i++)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 52

{

k=0;

for(j=1;j<=m;j++)

{

k=k+alloc[i][j];

}

avl[i]=avl[i]-k;

work[i]=avl[i];

}

for(k=1;k<=n;k++)

for(i=1;i<=n;i++)

{

count=0;

for(j=1;j<=m;j++)

{

if((finish[i]=='f')&&(need[i][j]<=work[i]))

count++;

}

if(count==m)

{

for(l=1;l<=m;l++)

work[l]=work[l]+alloc[i][l];

finish[i]='t';

pr[k]=i;

break;

}

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 53

for(i=1;i<=n;i++)

if(finish[i]=='t')

fcount++;

if(fcount==n)

{

}

else

printf("\n the system is in safe state");

for(i=1;i<=n;i++)

printf("\n %d",pr[i]);

printf("\n the system is not in safe state");

//getch();

}

Expected Output:

Enter the no of process 5

Enter the no of resources 3

Enter the total no of resources10 5 7

Enter the max resource req. by each pr alloc matrix

7 5 3

3 2 2

9 0 2

2 2 2

4 3 3

Process allocation matrix

0 1 0

2 0 0

3 0 2

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 54

2 1 1

0 2 2

The system is in safe state1

1

3

4

5

2

PROGRAM 6

Develop a C program to simulate the following contiguous memory allocation

Techniques:

a) Worst fit b) Best fit c) First fit.

DESCRIPTION

One of the simplest methods for memory allocation is to divide memory into several fixed-sized

partitions. Each partition may contain exactly one process. In this multiple-partition method, when a

partition is free, a process is selected from the input queue and is loaded into the free partition. When the

process terminates, the partition becomes available for another process. The operating system keeps a

table indicating which parts of memory are available and which are occupied. Finally, when a process

arrives and needs memory, a memory section large enough for this process is provided. When it is time

to

load or swap a process into main memory, and if there is more than one free block of memory of

sufficient size, then the operating system must decide which free block to allocate. Best-fit strategy

chooses the block that is closest in size to the request.

First-Fit

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 55

This is a very basic strategy in which we start from the beginning and allot the first hole, which is big

enough as per the requirements of the process. The first-fit strategy can also be implemented in a way

where we can start our search for the first-fit hole from the place we left off last time.

Best-Fit

This is a greedy strategy that aims to reduce any memory wasted because of internal fragmentation in the

case of static partitioning, and hence we allot that hole to the process, which is the smallest hole that fits

the requirements of the process. Hence, we need to first sort the holes according to their sizes and pick

the best fit for the process without wasting memory.

Worst-Fit

This strategy is the opposite of the Best-Fit strategy. We sort the holes according to their sizes and choose

the largest hole to be allotted to the incoming process. The idea behind this allocation is that as the

process is allotted a large hole, it will have a lot of space left behind as internal fragmentation. Hence, this

will create a hole that will be large enough to accommodate a few other processes.

PROGRAM

WORST-FIT

#include<stdio.h>

#define max 25

void main()

{

int

frag[max],b[max],f[max],i,j,nb,nf,t

emp; static int bf[max],ff[max];

printf("\n\tMemory Management Scheme - First Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 56

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

{

ff[i]=j;

break;

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 57

}

}

}

frag[i]=temp;

bf[ff[i]]=1;

}

printf("\nFile_no:\tFile_size :\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

}

OUT PUT

$ cc mm.c

$./a.out

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 58

File No File Size Block No Block Size Fragment

1 1 1 5 4

2 4 3 7 3

Program :BEST-FIT

#include<stdio.h>

#define max 25

void main()

{

int frag[max],b[max],f[max],i,j,nb,nf,temp,lowest=10000;

static int bf[max],ff[max];

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

printf("Block %d:",i);

scanf("%d",&b[i]);

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 59

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

if(bf[j]!=1)

{

temp=b[j]-f[i];

if(temp>=0)

if(lowest>temp)

{

ff[i]=j;

lowest=temp;

}

}}

frag[i]=lowest; bf[ff[i]]=1; lowest=10000;

}

printf("\nFile No\tFile Size \tBlock No\tBlockSize\tFragment");

for(i=1;i<=nf && ff[i]!=0;i++)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 60

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

}

OUTPUT

$ cc best.c

$./a.out

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 2 2 1

2 4 1 5 1

Program :FIRST-FIT

#include<stdio.h>

#define max 25

void main()

{

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 61

int

frag[max],b[max],f[max],i,j,nb,nf,temp,highes

t=0; static int bf[max],ff[max];

printf("\n\tMemory Management Scheme - Worst Fit");

printf("\nEnter the number of blocks:");

scanf("%d",&nb);

printf("Enter the number of files:");

scanf("%d",&nf);

printf("\nEnter the size of the blocks:-\n");

for(i=1;i<=nb;i++)

{

printf("Block %d:",i);

scanf("%d",&b[i]);

}

printf("Enter the size of the files :-\n");

for(i=1;i<=nf;i++)

{

printf("File %d:",i);

scanf("%d",&f[i]);

}

for(i=1;i<=nf;i++)

{

for(j=1;j<=nb;j++)

{

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 62

if(bf[j]!=1) //if bf[j] is not allocated

{

temp=b[j]-f[i];

if(temp>=0)

if(highest<temp)

{

}

}

frag[i]=highest; bf[ff[i]]=1; highest=0;

}

ff[i]=j; highest=temp;

}

printf("\nFile_no:\tFile_size:\tBlock_no:\tBlock_size:\tFragement");

for(i=1;i<=nf;i++)

printf("\n%d\t\t%d\t\t%d\t\t%d\t\t%d",i,f[i],ff[i],b[ff[i]],frag[i]);

}

OUTPUT

$ CC first.c

$./a.out

Enter the number of blocks: 3

Enter the number of files: 2

Enter the size of the blocks:-

Block 1: 5

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 63

Block 2: 2

Block 3: 7

Enter the size of the files:-

File 1: 1

File 2: 4

OUTPUT

File No File Size Block No Block Size Fragment

1 1 3 7 6

2 4 1 5 1

PROGRAM 7:

Develop a C program to simulate page replacement algorithms: a) FIFO b) LRU

DESCRIPTION:

Page replacement algorithms are an important part of virtual memory management and it helps the OS to

decide which memory page can be moved out making space for the currently needed page. However, the

ultimate objective of all page replacement algorithms is to reduce the number of page faults.

FIFO-This is the simplest page replacement algorithm. In this algorithm, the operating system keeps

track of all pages in the memory in a queue, the oldest page is in the front of the queue. When a page

needs to be replaced page in the front of the queue is selected for removal.

LRU-In this algorithm page will be replaced which is least recently used

ALGORITHM:

1. Start the process

2. Read number of pages n

3. Read number of pages no

4. Read page numbers into an array a[i]

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 64

5. Initialize avail[i]=0 .to check page hit

6. Replace the page with circular queue, while re-placing check page availability in the frame

Place avail[i]=1 if page is placed in theframe Count page faults

7. Print the results.

8. Stop the process.

A) FIRST IN FIRST OUT

SOURCE CODE:

#include<stdio.h>

int fr[3];

void main()

{

void display();

int i,j,page[12]={2,3,2,1,5,2,4,5,3,2,5,2};

int

flag1=0,flag2=0,pf=0,frsize=3,top=0;

for(i=0;i<3;i++)

{

fr[i]=-1;

}

for(j=0;j<12;j++)

{

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 65

flag1=0; flag2=0;

for(i=0;i<12;i++)

{

if(fr[i]==page[j])

{

flag1=1; flag2=1; break;

}}

if(flag1==0)

{

for(i=0;i<frsize;i++)

{

if(fr[i]==-1)

{

fr[i]=page[j]; flag2=1;

break;

}

}

}

if(flag2==0)

{

fr[top]=page[j];

top++;

pf++;

if(top>=frsize)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 66

top=0;

}

display();

}

printf("Number of page faults : %d ",pf+frsize);

}

void display()

{

int i; printf("\n");

for(i=0;i<3;i++)

printf("%d\t",fr[i]);

}

OUTPUT:

$cc a2.c

$./a.out

2 -1 -1

2 3 -1

2 3 -1

2 3 1

5 3 1

5 2 1

5 2 4

5 2 4

3 2 4

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 67

3 2 4

3 5 4

3 5 2

Number of page faults: 9

B) LEAST RECENTLY USED

AIM: To implement LRU page replacement technique.

ALGORITHM:

1. Start the process

2. Declare the size

3. Get the number of pages to be inserted

4. Get the value

5. Declare counter and stack

6. Select the least recently used page by counter value

7. Stack them according the selection.

8. Display the values

9. Stop the process

SOURCE CODE :

#include<stdio.h>

int fr[3];

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 68

void main()

{

void display();

int p[12]={2,3,2,1,5,2,4,5,3,2,5,2},i,j,fs[3];

int index,k,l,flag1=0,flag2=0,pf=0,frsize=3;

for(i=0;i<3;i++)

{

fr[i]=-1;

}

for(j=0;j<12;j++)

{

flag1=0,flag2=0;

for(i=0;i<3;i++)

{

if(fr[i]==p[j])

{

flag1=1;

flag2=1; break;

}

}

if(flag1==0)

{

for(i=0;i<3;i++)

{

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 69

if(fr[i]==-1)

{

fr[i]=p[j]; flag2=1;

break;

}

}

}

if(flag2==0)

{

for(i=0;i<3;i++)

fs[i]=0;

for(k=j-1,l=1;l<=frsize-1;l++,k--)

{

for(i=0;i<3;i++)

{

if(fr[i]==p[k])

fs[i]=1;

}}

for(i=0;i<3;i++)

{

if(fs[i]==0)

index=i;

}

fr[index]=p[j];

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 70

pf++;

}

display();

}

printf("\n no of page faults :%d",pf+frsize);

}

void display()

{

int i; printf("\n");

for(i=0;i<3;i++)

printf("\t%d",fr[i]);

}

OUTPUT:

2 -1 -1

2 3 -1

2 3 -1

2 3 1

2 5 1

2 5 1

2 5 4

2 5 4

3 5 4

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 71

3 5 2

3 5 2

3 5 2

No of page faults: 7

LRU

AIM: To Simulate LRU page replacement algorithms.

ALGORITHM:

Step 1: Start the program.

Step 2: Read the number of frames.

Step 3: Read the number of pages.

Step 4: Read the page numbers.

Step 5: Initialize the values in frames to -1.

Step 6: Allocate the pages in to frames by selecting the page that has not been used for the longest period

of time.

Step 7: Display the number of page faults. Step 8: Stop the program.

PROGRAM :

SOURCE CODE: /* A program to simulate LRU Page Replacement Algorithm */

#include<stdio.h>

Int main()

{

int a[5],b[20],p=0,q=0,m=0,h,k,i,q1=1,j,u,n;

char f='F';

printf("Enter the number of pages:");

scanf("%d",&n);

printf("Enter %d Page Numbers:",n);

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 72

for(i=0;i<n;i++) scanf("%d",&b[i]); for(i=0;i<n;i++)

{

if(p==0)

{

if(q>=3)

q=0;

a[q]=b[i];

if(q1<3) { q1=q; }

}

printf("\n%d",b[i]);

printf("\t"); for(h=0;h<q1;h++)

printf("%d",a[h]);

if((p==0)&&(q<=3))

{

printf("-->%c",f); m++; } p=0; if(q1==3)

{

for(k=0;k<q1;k++)

{

if(b[i+1]==a[k]) p=1;

}

for(j=0;j<q1;j++)

{

u=0; k=i;

while(k>=(i-1)&&(k>=0))

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 73

{

if(b[k]==a[j])

u++;

k--;

}

if(u==0)

q=j;

}

}

else

{

for(k=0;k<q;k++)

{

if(b[i+1]==a[k])

p=1;

}

}

}

printf("\nNo of faults:%d",m);

}

OUTPUT:

$ cc lru.c

$./a.out

Enter the number of pages: 12

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 74

Enter 12 Page Numbers:

2 2-->F

3 23-->F

2 23

1 231-->F

5 531-->F

2 521-->F

4 524-->F

5 524

3 324-->F

2 324

5 354-->F

2 352-->F

No of faults: 7

RESULT: Thus the program was executed and verified successfully.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 75

PROGRAM 8

Simulate following File Organization Techniques

a) Single level directory b) Two level directory

SINGLE LEVEL DIRECTORY:

AIM: Program to simulate Single level directory file organization technique.

DESCRIPTION: The directory structure is the organization of files into a hierarchy of folders. In a

single-level directory system, all the files are placed in one directory. There is a root directory which

has all files. It has a simple architecture and there are no sub directories. Advantage of single level

directory system is that it is easy to find a file in the directory.

SOURCE CODE :

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

struct

{

char dname[10],f

name[10][10];

int fcnt; }dir;

void main()

{

int i,ch;

char f[30];

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 76

dir.fcnt = 0;

printf("\nEnter name of directory -- ");

scanf("%s", dir.dname);

while(1)

{

printf("\n\n1. Create File\t2. Delete File\t3. Search File \n 4. Display Files\t5.

Exit\nEnter your choice -- ");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nEnter the name of the file -- ");

scanf("%s",dir.fname[dir.fnt]);

dir.fcnt++;

break;

case 2: printf("\nEnter the name of the file -- ");

scanf("%s",f);

for(i=0;i<dir.fname[i]==0)

{

if(strcmp(f, dir.fname[i])==0)

{

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 77

printf("File %s is deleted ",f);

strcpy(dir.fname[i],dir.fname[dir.fcnt-1]);

break;

}

}

if(i==dir.fcnt)

printf("File %s not found",f);

else

dir.fcnt--;

break;

case 3: printf("\nEnter the name of the file -- ");

scanf("%s",f);

for(i=0;i<dir.fcnt;i++)

{

if(strcmp(f, dir.fname[i])==0)

{

printf("File %s is found ", f);

break;

}

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 78

if(i==dir.fcnt)

printf("File %s not found",f);

break;

case 4: if(dir.fcnt==0)

printf("\nDirectory Empty");

else

{

printf("\nThe Files are -- ");

for(i=0;i<dir.fcnt;i++)

printf("\t%s",dir.fname[i]);

}

break;

default: exit(0);

}

}

}

OUTPUT:

$cc f1.c

$./a.out

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 79

Enter name of directory -- CSE

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- A

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- B

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 1

Enter the name of the file -- C

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 4

The Files are -- A B C

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 3

Enter the name of the file – ABC File

ABC not found

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 2

Enter the name of the file – B

File B is deleted

1. Create File 2. Delete File 3. Search File

4. Display Files 5. Exit Enter your choice – 5

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 80

TWO LEVEL DIRECTORY

AIM: Program to simulate two level file organization technique

Description:

In the two-level directory system, each user has own user file directory (UFD). The system

maintains a master block that has one entry for each user. This master block contains the

addresses of the directory of the users. When a user job starts or a user logs in, the system's

master file directory (MFD) is searched. When a user refers to a particular file, only his own UFD

is searched.

SOURCE CODE :

#include<stdio.h>

#include<string.h>

#include<stdlib.h>

struct

{

char dname[10],fname[10][10];

int fcnt;

}

dir[10];

void main()

{

int i,ch,dcnt,k;

char f[30], d[30];

dcnt=0;

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 81

while(1)

{

printf("\n\n1. Create Directory\t2. Create File\t3. Delete File");

printf("\n4. Search File\t\t5. Display\t6. Exit\t Enter your choice --");

scanf("%d",&ch);

switch(ch)

{

case 1: printf("\nEnter name of directory -- ");

scanf("%s", dir[dcnt].dname);

dir[dcnt].fcnt=0;

dcnt++;

printf("Directory created");

break;

case 2: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter name of the file -- ");

scanf("%s",dir[i].fname[dir[i].fcnt]);

dir[i].fcnt++;

printf("File created");

}

if(i==dcnt)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 82

printf("Directory %s not found",d);

break;

case 3: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is deleted ",f);

dir[i].fcnt--;

strcpy(dir[i].fname[k],dir[i].fname[dir[i].fcnt]);

goto jmp;

}

}

printf("File %s not found",f); goto jmp;

}

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 83

printf("Directory %s not found",d);

jmp : break;

case 4: printf("\nEnter name of the directory -- ");

scanf("%s",d);

for(i=0;i<dcnt;i++)

{

if(strcmp(d,dir[i].dname)==0)

{

printf("Enter the name of the file -- ");

scanf("%s",f);

for(k=0;k<dir[i].fcnt;k++)

{

if(strcmp(f, dir[i].fname[k])==0)

{

printf("File %s is found ",f); goto jmp1;

}

}

printf("File %s not found",f); goto jmp1;

}

}

printf("Directory %s not found",d); jmp1: break;

case 5: if(dcnt==0)

printf("\nNo Directory's ");

else

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 84

{

printf("\nDirectory\tFiles");

for(i=0;i<dcnt;i++)

{

printf("\n%s\t\t",dir[i].dname);

for(k=0;k<dir[i].fcnt;k++)

printf("\t%s",dir[i].fname[k]);

}

}

break;

default:exit(0);

}

}

}

OUTPUT

$ cc f2.c

$./a.out

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 1

Enter name of directory -- DIR1 Directory created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 1

Enter name of directory -- DIR2 Directory created

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 85

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A1

File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6. Exit

Enter your choice -- 2

Enter name of the directory – DIR1

Enter name of the file -- A2

File created

1. Create Directory 2. Create File 3. Delete File

4. Search File 5. Display 6.

Exit Enter your choice – 6

VIVA QUESTIONS

1. Define directory?

2. List the different types of directory structures?

3. What is the advantage of hierarchical directory structure?

4. Which of the directory structures is efficient? Why?

5. What is acyclic graph directory?

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 86

PROGRAM 9

Develop a C program to simulate the Linked file allocation strategies.

A. SEQUENTIAL:

AIM:

C program for implementing sequential file allocation method.

DESCRIPTION:

The most common form of file structure is the sequential file in this type of file, a fixed format is

used for records. All records (of the system) have the same length, consisting of the same

number of fixed length fields in a particular order because the length and position of each field are known,

only the values of fields need to be stored, the field name and length for each field are attributes of the file

structure.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations to each in sequential order a).

Randomly select a location from available location s1= random(100);

a) Check whether the required locations are free from the selected location.

if(b[s1].flag==0)

{

for (j=s1;j<s1+p[i];j++)

{

if((b[j].flag)==0)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 87

count++;

}

if(count==p[i])

break;

}

a) Allocate and set flag=1 to the allocated locations.

for(s=s1;s<(s1+p[i]);s++)

{

k[i][j]=s;

j=j+1;

b[s].bno=s;

b[s].flag=1;

}

Step 5: Print the results file no, length, Blocks allocated. Step

Step 6: Stop the program

SOURCE CODE :

#include<stdio.h>

Int main()

{

int f[50],i,st,j,len,c,k;

for(i=0;i<50;i++)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 88

f[i]=0;

X:

printf("\n Enter the starting block & length of file");

scanf("%d%d",&st,&len);

for(j=st;j<(st+len);j++)

if(f[j]==0)

{

f[j]=1;

printf("\n%d->%d",j,f[j]);

}

else

{

printf("Block already allocated");

break;

}

if(j==(st+len))

printf("\n the file is allocated to disk");

printf("\n if u want to enter more files?(y-1/n-0)");

scanf("%d",&c);

if(c==1)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 89

goto X;

else

exit();

}

OUTPUT:

Enter the starting block & length of file 4 10

4->1

5->1

6->1

7->1

8->1

9->1

10->1

11->1

12->1

13->1

The file is allocated to disk.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 90

B. INDEXED

AIM: To implement allocation method using chained method

DESCRIPTION:

In the chained method file allocation table contains a field which points to starting block of memory.

From it for each bloc a pointer is kept to next successive block. Hence,there is no external

fragmentation.

ALGORITHM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q= random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

q=random(100);

{

if(b[q].flag==0)

b[q].flag=1;

b[q].fno=j;

r[i][j]=q;

Step 5: Print the results file no, length ,Blocks allocated.

Step 6: Stop the program

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 91

SOURCE CODE :

#include<stdio.h>

int f[50],i,k,j,inde[50],n,c,count=0,p;

main()

{

for(i=0;i<50;i++)

f[i]=0;

x: printf("enter index block\t");

scanf("%d",&p);

if(f[p]==0)

{

f[p]=1;

printf("enter no of files on index\t");

scanf("%d",&n);

}

else

{

printf("Block already allocated\n");

goto x; }

for(i=0;i<n;i++)

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 92

scanf("%d",&inde[i]);

for(i=0;i<n;i++)

if(f[inde[i]]==1)

{

printf("Block already allocated");

goto x;

}

for(j=0;j<n;j++)

f[inde[j]]=1;

printf("\n allocated");

printf("\n file indexed");

for(k=0;k<n;k++)

printf("\n %d->%d:%d",p,inde[k],f[inde[k]]);

printf(" Enter 1 to enter more files and 0 to exit\t");

scanf("%d",&c);

if(c==1)

goto x;

else

exit();

}

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 93

OUTPUT:

$ CC index.c

$./a.out

enter index block 9

Enter no of files on index 3 1

2 3

Allocated

File indexed

9->1:1

9->2;1

9->3:1 enter 1 to enter more files and 0 to exit

C) LINKED:

AIM: To implement linked file allocation technique.

DESCRIPTION: In the chained method file allocation table contains a field which points to starting

block of memory. From it for each bloc a pointer is kept to next successive block. Hence, there is no

external fragmentation

ALGORTHIM:

Step 1: Start the program.

Step 2: Get the number of files.

Step 3: Get the memory requirement of each file.

Step 4: Allocate the required locations by selecting a location randomly q= random(100);

a) Check whether the selected location is free .

b) If the location is free allocate and set flag=1 to the allocated locations.

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 94

While allocating next location address to attach it to previous location

for(i=0;i<n;i++)

{

for(j=0;j<s[i];j++)

{

q=random(100); if(b[q].flag==0)

b[q].flag=1;

b[q].fno=j;

r[i][j]=q;

if(j>0)

{

}

}

p=r[i][j-1]; b[p].next=q;}

Step 5: Print the results file no, length ,Blocks

allocated.

Step 6: Stop the program

SOURCE CODE :

#include<stdio.h>

main()

{

int f[50],p,i,j,k,a,st,len,n,c;

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 95

for(i=0;i<50;i++) f[i]=0;

printf("Enter how many blocks that are already allocated");

scanf("%d",&p);

printf("\nEnter the blocks no.s that are already allocated");

for(i=0;i<p;i++)

{

scanf("%d",&a);

f[a]=1;

}

X:

printf("Enter the starting index block &

length"); scanf("%d%d",&st,&len); k=len;

for(j=st;j<(k+st);j++)

{

if(f[j]==0)

{

f[j]=1;

printf("\n%d->%d",j,f[j]);

}

else

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 96

{

printf("\n %d->file is already

allocated",j);

k++;

}

}

printf("\n If u want to enter onemore file? (yes-1/no-0)");

scanf("%d",&c);

if(c==1)

goto X;

else

exit();

}

OUTPUT:

Enter how many blocks that are already allocated 3 Enter the blocks no.s

that are already allocated 4 7 Enter the starting index block & length 3 7 9

3->1

4->1 file is already allocated

5->1

6->1

7- >1 file is already allocated

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 97

8- >1

9- >1file is already allocated

10->1

11->1

12->1

VIVA QUESTIONS

1) List the various types of files

2) What are the various file allocation strategies?

3) What is linked allocation?

4) What are the advantages of linked allocation?

5) What are the disadvantages of sequential allocation methods?

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 98

PROGRAM 10:

Develop a C program to simulate SCAN disk scheduling algorithm

DESCRIPTION

One of the responsibilities of the operating system is to use the hardware efficiently. For the disk

drives, meeting this responsibility entails having fast access time and large disk bandwidth. Both the

access time and the bandwidth can be improved by managing the order in which disk I/O requests are

serviced which is called as disk scheduling. The simplest form of disk scheduling is, of course, the

first-come, first-served (FCFS) algorithm. This algorithm is intrinsically fair, but it generally does not

provide the fastest service. In the SCAN algorithm, The disk arm starts at one end, and moves towards

the other end, servicing requests as it reaches each cylinder, until it gets to the other end of the disk. At

the other end, the direction of head movement is reversed, and servicing continues. The head

continuously scans back and forth across the disk. C-SCAN is a variant of SCAN designed to provide

a more uniform wait time. Like SCAN, C-SCAN moves the head from one end of the disk to the other,

servicing requests along the way. When the head reaches the other end, however, it immediately

returns to the beginning of the disk without servicing any requests on the return trip

SCAN DISK SCHEDULING ALGORITHM

SOURCE CODE

#include<stdio.h>

main()

{

int t[20], d[20], h, i, j, n, temp, k, atr[20], tot, p, sum=0;

printf("enter the no of tracks to be traveresed");

scanf("%d'",&n);

printf("enter the position of head");

scanf("%d",&h);

OPERATING SYSTEM LABORATORY BCS303

DEPT OF CS&DESIGN, ATME,MYSURU 99

t[0]=0;t[1]=h;

printf("enter the tracks");

for(i=2;i<n+2;i++)

scanf("%d",&t[i]);

for(i=0;i<n+2;i++)

{

for(j=0;j<(n+2)-i-1;j++)

{

if(t[j]>t[j+1])

{

temp=t[j];

t[j]=t[j+1];

t[j+1]=temp;

} } }

for(i=0;i<n+2;i++)

if(t[i]==h)

j=i;k=i;

p=0;

while(t[j]!=0)

{

OPERATING SYSTEM LABORATORY BCSL303

DEPT OF CS&DESIGN, ATME,MYSURU
100

atr[p]=t[j]; j--;

p++;

}

atr[p]=t[j];

for(p=k+1;p<n+2;p++,k++)

atr[p]=t[k+1];

for(j=0;j<n+1;j++)

{

if(atr[j]>atr[j+1])

d[j]=atr[j]-atr[j+1];

else

d[j]=atr[j+1]-atr[j];

sum+=d[j];

}

printf("\nAverage header movements:%f",(float)sum/n);

}

INPUT

Enter no.of tracks:9

Enter track position:55 58 60 70 18 90 150 160 184

OUTPUT

OPERATING SYSTEM LABORATORY BCSL303

DEPT OF CS&DESIGN, ATME,MYSURU
101

Tracks traversed Difference between tracks

150 50

160 10

184 24

90 94

70 20

60 10

58 2

55 3

18 37

