
ATME COLLEGE OF ENGINEERING
13th KM Stone, Bannur Road, Mysore - 560 028

DEPARTMENT OF COMPUTER SCIENCE & DESIGN

 (ACADEMIC YEAR 2023-24)

 LABORATORY MANUAL

SUBJECT: DIGITAL DESIGN & COMPUTER ORGANIZATION

 SUB CODE: BCS302

 SEMESTER: III-2022 CBCS Scheme

Composed by Verified by Approved by

Mr. Mahadevaswamy DM Mr. YOGESH N Dr. J.V GORABAL

PROGRAMMER FACULTY CO-ORDINATOR HOD, CS&DESIGN

INSTITUTIONAL MISSION AND VISION

Objectives

 To provide quality education and groom top-notch professionals, entrepreneurs

and leaders for different fields of engineering, technology and management.

 To open a Training-R & D-Design-Consultancy cell in each department,

gradually introduce doctoral and postdoctoral programs, encourage basic &

applied research in areas of social relevance, and develop the institute as a center

of excellence.

 To develop academic, professional and financial alliances with the industry as

well as the academia at national and transnational levels.

 To cultivate strong community relationships and involve the students and the staff

in local community service.

 To constantly enhance the value of the educational inputs with the participation of

students, faculty, parents and industry.

Vision

 Development of academically excellent, culturally vibrant, socially

responsible and globally competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive

and capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow’s

society.

 To strive to attain ever-higher benchmarks of educational excellence.

Sl
No.

Simulation packages preferred: Multisim, Modelsim, PSpice or any other
relevant

1.
Given a 4-variable logic expression, simplify it using appropriate technique and simulate
the same using basic gates.

2. Design a 4 bit full adder and subtractor and simulate the same using basic gates.

3.
Design Verilog HDL to implement simple circuits using structural, Data flow and
Behavioural model.

4.
Design Verilog HDL to implement Binary Adder-Subtractor – Half and Full Adder, Half
and Full Subtractor.

5. Design Verilog HDL to implement Decimal adder.

6. Design Verilog program to implement Different types of multiplexer like 2:1, 4:1 and 8:1.

7. Design Verilog program to implement types of De-Multiplexer.

8.
Design Verilog program for implementing various types of Flip-Flops such as SR, JK and
D.

Course outcome (Course Skill Set)

At the end of the course, the student will be able to:

CO1: Describe the fundamentals of machine instructions, addressing modes and Processor

performance.

CO2: Relate the comprehensive approaches involved in achieving communication between

processor and I/O devices.

CO3: Apply the K–Map techniques to simplify various Boolean expressions.

CO4: Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor

Performance.

CO5: Simulate various digital circuits designed using basic gates.

 CO6: Design and execute different types of combinational and sequential circuits using Verilog

 programs.

Assessment Details (both CIE and SEE)

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE)

is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50)

and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A

student shall be deemed to have satisfied the academic requirements and earned the credits allotted to

each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total

of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

● IPCC means practical portion integrated with the theory of the course.

● CIE marks for the theory component are 25 marks and that for the practical component is 25 marks.

● 25 marks for the theory component are split into 15 marks for two Internal Assessment Tests

(Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and 10 marks for other

assessment methods mentioned in 22OB4.2. The first test shall be held at the end of 40- 50%

coverage of the syllabus and the second test after covering 85-90% of the syllabus.

● Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the

theory component of IPCC (that is for 25 marks).

● The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of

IPCC.

CIE for the practical component of the IPCC

● 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks
for the test to be conducted after the completion of all the laboratory sessions.

● On completion of every experiment/program in the laboratory, the students shall be evaluated
including viva-voce and marks shall be awarded on the same day.

● The CIE marks awarded in the case of the Practical component shall be based on the
continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10
marks. Marks of all experiments’ write-ups are added and scaled down to 15 marks.

● The laboratory test (duration 02/03 hours) after completion of all the experiments shall be
conducted for 50 marks and scaled down to 10 marks.

● Scaled-down marks of write-up evaluations and tests added will be CIE marks for the
laboratory component of IPCC for 25 marks.

● The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the
IPCC.

CONTENTS

Exp.
No.

 Experiment Title Page No.

 Digital Electronics 1-11

1.
Given a 4-variable logic expression,

simplify it using appropriate technique and simulate the

same using basic gates.

 12-13

2.
Design a 4 bit full adder and subtractor and simulate the

same using basic gates.
 14-15

3.
Design Verilog HDL to implement simple circuits using

structural, Data flow and Behavioral model.
 16-17

4.
Design Verilog HDL to implement Binary

Adder-Subtractor – Half and Full Adder, Half and Full

Subtractor.

 18-21

5.
Design Verilog HDL to implement Decimal adder. 22

6.
Design Verilog program to implement Different types of

multiplexer like 2:1, 4:1 and 8:1.
 23-25

7. Design Verilog program to implement types of De-

Multiplexer.
 26-27

8.
Design Verilog program for implementing

various types of Flip-Flops such as SR, JK and D.
28-30

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

DIGITAL ELECTRONICS

Digital electronics, digital technology or digital (electronic) circuits are electronics that operate on

digital signals. In contrast, analog circuits manipulate analog signals whose performance is more

subject to manufacturing tolerance, signal attenuation and noise. Digital techniques are helpful

because it is a lot easier to get an electronic device to switch into one of a number of known states

than to accurately reproduce a continuous range of values.

Digital electronic circuits are usually made from large assemblies of logic gates (often printed

on integrated circuits), simple electronic representations of Boolean logic functions.

An advantage of digital circuits when compared to analog circuits is that signals represented

digitally can be transmitted without degradation caused by noise. For example, a continuous audio

signal transmitted as a sequence of 1s and 0s, can be reconstructed without error, provided the noise

picked up in transmission is not enough to prevent identification of the 1s and 0s. In a digital

system, a more precise representation of a signal can be obtained by using more binary digits to

represent it. While this requires more digital circuits to process the signals, each digit is handled by

the same kind of hardware, resulting in an easily scalable system. In an analog system, additional

resolution requires fundamental improvements in the linearity and noise characteristics of each step

of the signal chain.

With computer-controlled digital systems, new functions to be added through software

revision and no hardware changes. Often this can be done outside of the factory by updating the

product's software. So, the product's design errors can be corrected after the product is in a

customer's hands. Information storage can be easier in digital systems than in analog ones. The

noise immunity of digital systems permits data to be stored and retrieved without degradation. In an

analog system, noise from aging and wear degrade the information stored. In a digital system, as

long as the total noise is below a certain level, the information can be recovered perfectly. Even

when more significant noise is present, the use of redundancy permits the recovery of the original

data provided too many errors do not occur.

In some cases, digital circuits use more energy than analog circuits to accomplish the same

tasks, thus producing more heat which increases the complexity of the circuits such as the inclusion

of heat sinks. In portable or battery-powered systems this can limit use of digital systems. For

example, battery powered cellular telephones often use a low-power analog front-end to amplify

and tune in the radio signals from the base station. However, a base station has grid power and can

use power hungry, but very flexible software radios. Such base stations can be easily reprogrammed

to process the signals used in new cellular standards. In some systems, if a single piece of digital

DEPT. OF CS&DESIGN,ATMECE,MYSURU 1

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

data is lost or misinterpreted, the meaning of large blocks of related data can completely change.

DEPT. OF CS&DESIGN,ATMECE,MYSURU 2

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

LOGIC GATES

The basic logic gates are the building blocks of more complex logic circuits. These logic gates

perform the basic Boolean functions, such as AND, OR, NAND, NOR, Inversion, Exclusive-OR,

Exclusive-NOR. Fig. below shows the circuit symbol, Boolean function, and truth. It is seen from

the Fig that each gate has one or two binary inputs, A and B, and one binary output, C. The small

circle on the output of the circuit symbols designates the logic complement. The AND, OR,

NAND, and NOR gates can be extended to have more than two inputs. A gate can be extended to

have multiple inputs if the binary operation it represents is commutative and associative.

DEPT. OF CS&DESIGN,ATMECE,MYSURU 3

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

 Introduction to Electronics Workbench

Electronics Workbench is an electronics and digital logic lab inside a computer, modeled after

a real electronics workbench. It is a design tool that provides you with components &

instruments to create “virtual” board-level designs:

 No actual breadboards, components, or instruments needed.

 Click-and-drag schematic editing.

 It offers mixed analog & digital simulation and graphical waveform analysis.

 Circuit behavior simulated realistically.

 Results displayed on multimeter, oscilloscope, bode plotter, logic analyzer, etc.

The main GUI interface of EWB

 Using Electronics Workbench for Design

 You may use EWB to:

 Explore ideas and test preliminary circuits.

 Refine circuits to full layout (If circuit requires parts of a previous design)

 Export files in format used by PCB (Printed Circuit Board) layout packages as move from

design to production.

DEPT. OF CS&DESIGN,ATMECE,MYSURU 4

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

General EWB Functions

Selecting
 To move a component or instrument need to select it selected item highlights: components

red, wires thicken

 Clicking to Select

To select single item, click on it.

 To select additional items, press CTRL+ click.

 Selecting All

 Choose Edit/Select All.

 Dragging to Select

Place pointer above & to side of group of items. Press & hold mouse button & drag

downward diagonally. Release mouse button when rectangle encloses everything desired.

 Deselecting

To deselect single item, press CTRL+click.

To deselect all selected items, click on empty spot in window.

Setting Labels, Wiring
Setting Labels, Values, Models & Reference IDs,

 To set labels, values (for simple components) & models (for complex components), select

component and choose Circuit/Component Properties, choose desired tab, make any changes,

and click OK.

 Can also invoke Circuit/Component Properties box by double-clicking on component.

* Notes:

The Circuit/Component Properties box contains a number of tabs; depending on which

component is selected an analog component has either a value or a model, not both.

Wiring Components

Point to a component’s terminal so it highlights; press & hold mouse button, and drag so a wire

appears drag wire to a terminal on another component or to an instrument connection, when

terminal on second component or instrument highlights, release mouse button

DEPT. OF CS&DESIGN,ATMECE,MYSURU 5

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

 Inserting, Connecting, Editing

Inserting Components

To insert component into existing circuit, place it on top of wire; it will automatically be

inserted if there is room.

Connecting Wires

 If drag a wire from a component’s terminal to another wire, a connector is automatically

created when you release mouse button.

 Note: a connector button also appears in the Basic toolbar (to insert connectors into an

existing circuit).

Deleting Wires

 To delete a wire, select it & choose Edit/Delete

 Alternatively, disconnect wire by selecting one end of it & moving it to an open spot on circuit

window.

Changing Wire Color

 To change a wire’s color, double-click it & choose Schematic Options tab; click the Color

button & choose a new color.

 Straightening a Wire
 Move wire itself.

 Move component to which wire is attached.

 Press ALT and move component to which wire is attached.

 Select component and press appropriate arrow key to align it.

 If two wires cross in a way that makes them hard to follow, select one & drag it to new

location

 *Note:

 The way a wire is routed sometimes depends on terminal from which wire was dragged; try

disconnecting routed wire & then rewire from the opposite terminal.

DEPT. OF CS&DESIGN,ATMECE,MYSURU 6

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Instruments

 Using an Instrument Icon

 To display the Instruments toolbar, click the Instruments button on the Parts Bin toolbar.

To place an instrument on the circuit window, drag the desired button from the Instruments

toolbar to the window. To attach an instrument to a circuit, point to a terminal on its icon so it

highlights and drag a wire to a component. To remove an instrument icon, select it & choose

Edit/Delete

 Opening an Instrument

Double-click the instrument’s icon to see its controls

 To selection options, click buttons on the controls

 To change values or units, click the up/down arrows.

 Turning on Power

Click the power switch to turn power on. Click switch again to turn power off. (Note: Turning off

power erases data & instrument traces.

DEPT. OF CS&DESIGN,ATMECE,MYSURU 7

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Lab Tasks

Task 1: Name the basic toolboxes of EWB

DEPT. OF CS&DESIGN,ATMECE,MYSURU 8

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

 Task 2: Basic buttons in EWB toolboxes

Task 3 EWB Toolbar

DEPT. OF CS&DESIGN,ATMECE,MYSURU 9

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Task 4: Simple circuit; playing with EWB

In the following circuit

Draw the following circuit. After that make the following changes

DEPT. OF CS&DESIGN,ATMECE,MYSURU 10

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

 Connect the output of the converter to the red probe

 Connect the Vcc line to the input of the inverter

 Start simulating the circuit

 State your observation down:

Observation:

 In the same circuit above, stop the simulation and connect the ground to the input of the inverter.

State your observation down:

Observation:

Task 5: Simple circuit; two inverters connected serially

 Repeat Task 2 of this report and state down your observations.

Task 6: Simple circuit; a clock source with a red probe
Draw the following circuit and simulate it. Write down
your observations. Notice that the clock (from
Sources toolbox) frequency is 2 Hz.

DEPT. OF CS&DESIGN,ATMECE,MYSURU 11

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Note: You can change the default values of the clock by doing mouse right clicking on the clock and
click on the “Component Properties ...” as shown below:

Task 7: Simple circuit; a clock source with two red probes

Draw the following circuit and simulate it. Write down your observations. Notice that the clock
frequency is 2 Hz.

Task 8: EWB Menu

Name the following icons and state down their functions.

DEPT. OF CS&DESIGN,ATMECE,MYSURU 12

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 1

Aim: Given a 4-variable logic expression, simplify it using appropriate technique and simulate

the same using basic gates.

Realization of Boolean Expression:

Simplification using K-Map:

After Simplifying we get the Boolean expression Y= A'B + CD'

Realization using Basic Gates

DEPT. OF CS&DESIGN,ATMECE,MYSURU 13

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

DEPT. OF CS&DESIGN,ATMECE,MYSURU 14

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Circuit Simulation

Verify the given truth table for the realized circuit.

Exercise Questions:

1. Simplify the same Boolean expression using Boolean theorems and verify the truth table.

2. Realize the given Boolean expression using minimum number of basic gates.

Y = AB (C+C') + ABCD + A'B'CD + AB (D+1)

DEPT. OF CS&DESIGN,ATMECE,MYSURU 15

Sum

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 2

Aim: Design a 4 bit full adder and subtractor and simulate the same using basic gates.

4-bit binary Addition of two numbers:

Example 1:

X = 1 0 1 0

Y = 0 1 1 1

 Z = 1 1 0 0 1

Carry out Sum

Example 2:

X = 0 1 1 0

Y = 0 1 0 0

 Z = 1 0 1 0

 4 bit Adder logic circuit realized using basic gates

DEPT. OF CS&DESIGN,ATMECE,MYSURU 16

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Figure: Logic diagram Implementation on EWB

 Result:4 bit Full adder and Subtractor is verified with examples

DEPT. OF CS&DESIGN,ATMECE,MYSURU 17

INPUT OUTPUT

A B A > B A= B A< B

0 0 0 1 0

0 1 0 0 1

1 0 1 0 0

1 1 0 1 0

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 3

Aim: Design Verilog HDL to implement simple circuits using structural, Data flow and

Behavioral model.

To verify a VHDL / Verilog code for 1-bit Comparator

Logic symbol Truth table

VERILOG CODE:

Dataflow Description Behavioral Description
Structural

Description

module comp (a,b, agtb, aeqb,

alsb);

input a; input
b; output
agtb; output
aeqb; output
alsb; assign
agtb =
a&(~b);
assign alsb =
(~a)&b;
assign aeqb =
~(a^b);
endmodule

module comparator
(a,b,y);
input a;
input b;
output [2:0]y;
reg[2:0]y;
wire[1:0]sel; assign
sel={a,b};
always @(sel)begin case(sel)
2'd0: y = 3'd2;
2'd1: y = 3'd1;
2'd2: y = 3'd4;
2'd3: y = 3'd2;
endcase end
endmodule

module comparator
(a,b,agtb,aeqb,alsb);
input a;
input b; output
agtb; output
aeqb; output
alsb; wire x,y;
not u1(x,a);
not u2(y,b);
and u3(agtb,a,y);
xnor u4(aeqb,a,b);
and u5(alsb,x,b);
endmodule

DEPT. OF CS&DESIGN,ATMECE,MYSURU 18

Condition A > B A= B A< B

Expression AB' A'B' + AB A'B

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Expressions and Logic Diagram:

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 19

module half (a,b,s,c); input a,b;

output s,c; assign s= a ^ b; assign

c= a & b; endmodule

Data Flow Description INPUT OUTPUT

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 4

Aim: Design Verilog HDL to implement Binary Adder-Subtractor – Half and Full Adder,

Half and Full Subtractor.

4. a HALF ADDER:

Logic symbol Logic diagram:

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 20

module full_adder (cin,a,b,s,cout); input

cin, a, b;
output s, cout;

reg s, cout;

always @(cin or a or b) begin s = a ^ b ^

cin;

cout = (a & b) | (b & cin) | (cin & a); end
endmodule

Data Flow Description
INPUT OUTPUT

A B Cin S CO

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

4.b FULL ADDER

Logic symbol Logic diagram

VERILOG CODE Truth table:

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 21

module half_sub(input a,input b, output

diff, output borrow);

assign diff=a^b;

assign borrow=(~a)&b;

endmodule

Data Flow Description INPUT OUTPUT

A B Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

4.c HALF SUBTRACTOR

Logic symbol Logic diagram

VERILOG CODE Truth table:

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 22

module fullsub(a, b, c, d, bout); input a, b, c;

output d, bout; assign d = a^b^c;

assign bout= (~a & c) | (~a & b) | (b & c);

endmodule

Data Flow Description INPUT OUTPUT

A B Cin Difference Borrow

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1

0 1 1 0 1

1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

4.d FULL SUBTRACTOR

Logic symbol Logic diagram

VERILOG CODE Truth table:

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 23

module bcd_adder
(a,b,carry_in,sum,carry); input [3:0] a,b;
input carry_in; output [3:0] sum; output carry;
//Internal variables reg [4:0] sum_temp;
reg [3:0] sum; reg carry;

always @(a,b,carry_in) begin
sum_temp = a+b+carry_in; if(sum_temp > 9)begin
sum_temp = sum_temp+6; carry = 1;
sum = sum_temp[3:0];end elsebegin
carry = 0;
sum = sum_temp[3:0]; end
end

endmodule

Data Flow Description

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 5

Aim: Design Verilog HDL to implement Decimal adder.

Binary Coded Decimal Adder:

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 24

module mux_2_1(input sel,

input i0, i1, output y); assign y =

sel ? i1 : i0; endmodule

Data Flow Description Input Output

Sel Y

0 i0

1 i1

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 6

Aim: Design Verilog program to implement Different types of multiplexer like 2:1, 4:1 and

8:1.

6a. 2:1 Multiplexer:

Logic symbol

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 25

module mux_4:1(input [1:0] sel,
input i0,i1,i2,i3, output reg y); always @(*)
begin
case(sel) 2'h0: y = i0; 2'h1: y = i1; 2'h2: y = i2;
2'h3: y = i3;
default: $display("Invalid sel input");
end case end endmodule

Data Flow Description

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

6.b 4:1 Multiplexer:

Logic symbol

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 26

module mux8to1(s, i, y);

input [2:0]s; input [7:0]i; output y; reg y; always

@ (i, s) begin

case(s)

3'd0:y=i[0]; 3'd1:y=i[1]; 3'd2:y=i[2];

3'd3:y=i[3]; 3'd4:y=i[4]; 3'd5:y=i[5];

3'd6:y=i[6]; default :y=i[7]; endcase

end

endmodule

Data Flow Description

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

6.c 8:1 Multiplexer:

Logic symbol

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 27

assign {y0,y1} = sel?{1'b0 , i} : { i, 1'b0};

endmodule

module demux_2_1(input sel,

input i, output y0, y1);

Data Flow Description

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 7

Aim: Design Verilog program to implement types of De-Multiplexer.

7.a 1:2 DE-MULTIPLEXER

Logic symbol

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 28

module demux_1_4(input [1:0] sel,

input i, output reg y0, y1, y2, y3);

always @(*) begin case(sel)

2'h0: {y0,y1,y2,y3} = {i,3'b0};

2'h1: {y0,y1,y2,y3} = {1'b0,i,2'b0};

2'h2: {y0,y1,y2,y3} = {2'b0,i,1'b0};

2'h3: {y0,y1,y2,y3} = {3'b0,i};

default: $display("Invalid sel input"); endcase
end

endmodule

Data Flow Description

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

7.b 1:4 DEMULTIPLEXER

Logic symbol

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 29

module SR_flipflop (input clk, rst_n, input

s,r, output reg q, output q_bar);

always@(posedge clk) begin if(!rst_n) q <= 0;
else begin case({s,r}) 2'b00: q <= q;
2'b01: q <= 1'b0;
2'b10: q <= 1'b1;
2'b11: q <= 1'bx; inputs endcase
end end
assign q_bar = ~q;

endmodule

Behavioral Description INPUT OUTPUT

S R CLK Q Q'

0 0 ↑ LAST Q LAST Q'

0 1 ↑ 0 1

1 0 ↑ 1 0

1 1 ↑ D D

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

Experiment 8
Aim: Design Verilog program for implementing various types of Flip-Flops such as SR, JK

and D.

8.a S R Flip Flop

Logic symbol Logic diagram:

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 30

module D_f_f(d,clk,reset,q,qb); input d;

input clk; input reset; output q; output qb; reg
q, qb;

always@(posedge clk or posedge reset) begin
if(reset==1'b1)
begin
q<=1'b0;
qb<=1'b1;
end
else
begin
q<=d; qb<=~d;

end end endmodule

Behavioral Description

INPUT OUTPUT

D CLK Q

X ↓ NO CHANGE

0 ↑ 0

1 ↑ 1

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

8.b D Flip Flop

Logic symbol Logic diagram:

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 31

module JK_f_f(JK,clk,reset,q,qb);
input [1:0] JK; input clk; input reset; output
q,qb; reg q,qb;

always@(posedge clk) begin if
(reset==1'b1)
q = 1'd0 ;
else begin
case(JK) 2'b00:q= q ; 2'b01: q= 1'd0 ;
2'b10: q= 1'd1 ;
2'b11: q= ~ q; endcase
end
qb = ~q; end endmodule

Behavioral Description INPUT OUTPUT

J K CLK Q Q'

0 0 ↑ No Change No Change

0 1 ↑ 0 1

1 0 ↑ 1 0

1 1 ↑ TOGGLE TOGGLE

 DIGITAL DESIGN & COMPUTER ORGANIZATION BCS302

8.c JK Flip Flop

Logic symbol Logic diagram:

VERILOG CODE Truth table

Simulation waveforms:

Result:

DEPT. OF CS&DESIGN,ATMECE,MYSURU 32

	SUBJECT: DIGITAL DESIGN & COMPUTER ORGANIZATION
	SUB CODE: BCS302
	Course outcome (Course Skill Set)
	At the end of the course, the student will be able to:
	CO5: Simulate various digital circuits designed using basic gates.
	Assessment Details (both CIE and SEE)
	CIE for the theory component of the IPCC (maximum marks 50)

	Introduction to Electronics Workbench
	Using Electronics Workbench for Design
	General EWB Functions

	Lab Tasks
	Task 1: Name the basic toolboxes of EWB
	Task 2: Basic buttons in EWB toolboxes
	Task 3 EWB Toolbar
	Task 4: Simple circuit; playing with EWB
	Observation:

	
	Observation:
	Task 5: Simple circuit; two inverters connected serially
	Task 6: Simple circuit; a clock source with a red probe
	Task 7: Simple circuit; a clock source with two red probes
	Task 8: EWB Menu

	Experiment 1
	Experiment 2
	Experiment 3
	To verify a VHDL / Verilog code for 1-bit Comparator

	Experiment 4
	Experiment 5
	Experiment 6
	Experiment 7
	7.a 1:2 DE-MULTIPLEXER
	7.b 1:4 DEMULTIPLEXER

	Experiment 8
	8.a S R Flip Flop
	Result:
	8.c JK Flip Flop

