
ATME COLLEGE OF ENGINEERING

13th KM Stone, Bannur Road, Mysore - 560 028

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

(ACADEMIC YEAR 2023-2024)

NOTES

Subject: OBJECT ORIENTED PROGRAMMING

WITH JAVA

Subject Code:

BCS306A

 Semester: III

INSTITUTIONAL MISSION AND VISION

Objectives

 To provide quality education and groom top-notch professionals, entrepreneurs and

leaders for different fields of engineering, technology and management.

 To open a Training-R & D-Design-Consultancy cell in each department, gradually

introduce doctoral and postdoctoral programs, encourage basic & applied research in areas

of social relevance, and develop the institute as a center of excellence.

 To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels.

 To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels.

 To cultivate strong community relationships and involve the students and the staff in local

community service.

 To constantly enhance the value of the educational inputs with the participation of

students, faculty, parents and industry.

Vision

 Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow's society.

 To strive to attain ever-higher benchmarks of educational excellence.

Department of Computer Science & Engineering

Vision of the Department

To develop highly talented individuals in Computer Science and Engineering to deal

with real world challenges in industry, education, research and society.

Mission of the Department

 To inculcate professional behavior, strong ethical values, innovative research

capabilities and leadership abilities in the young minds & to provide a teaching

environment that emphasizes depth, originality and critical thinking.

 Motivate students to put their thoughts and ideas adoptable by industry or to

pursue higher studies leading to research.

Program Educational Objectives (PEO'S):

1. Empower students with a strong basis in the mathematical, scientific and engineering

fundamentals to solve computational problems and to prepare them for employment,

higher learning and R&D.

2. Gain technical knowledge, skills and awareness of current technologies of computer

science engineering and to develop an ability to design and provide novel engineering

solutions for software/hardware problems through entrepreneurial skills.

3. Exposure to emerging technologies and work in teams on interdisciplinary projects

with effective communication skills and leadership qualities.

4. Ability to function ethically and responsibly in a rapidly changing environment by

applying innovative ideas in the latest technology, to become effective professionals in

Computer Science to bear a life-long career in related areas.

Program Specific Outcomes (PSOs)

1. Ability to apply skills in the field of algorithms, database design, web design, cloud

computing and data analytics.

2. Apply knowledge in the field of computer networks for building network and internet-

based applications.

Object Oriented programming with Java BCS306A

 18CS653

1

Department of Computer Science and Engineering, ATMECE, Mysuru

MODULE 1

Syllabus:

An Overview of Java: Object-Oriented Programming, A First Simple Program, A Second ShortProgram,

Two Control Statements, Using Blocks of Code, Lexical Issues, The Java Class Libraries.

Data Types, Variables, and Arrays: Java Is a Strongly Typed Language, The Primitive Types, Integers,

Floating- Point Types, Characters, Booleans, A Closer Look at Literals, Variables, Type Conversion and

Casting, Automatic Type Promotion in Expressions, Arrays

Operators: Arithmetic Operators, Relational Operators, Boolean Logical Operators, The Assignment

Operator, The ? Operator, Operator Precedence, Using Parentheses. Control Statements: Java’s Selection

Statements (if, The Traditional switch), Iteration Statements (while, do-while, for, The For-Each Version

of the for Loop, Local Variable Type Inference in a for Loop, Nested Loops), Jump Statements (Using

break, Using continue, return).

 An Overview of Java

The key features of Java are security and portability (platform-independent nature). When we download

any application from the internet, there is a chance that the downloaded code contain virus. But,

downloading the Java code assures security. Java program can run on any type of system connected to

internet and thus provides portability.

The Platform independent nature can be interpreted by two things:

 Operating System Independent: Independent of the operating system on which your source

code is being run.

 Hardware Independent: Doesn't depend upon the hardware on which your java code is run upon

i.e. it can run on any hardware configuration.

These two points make it a platform independent language. Hence, the users do not have to change the

syntax of the program according to the Operating System and do not have to compile the program again and

again on different Operating Systems. The meaning of this point can be understood as you read further.

C and C++ are platform dependent languages as the file which compiler of C,C++ forms is a
.exe(executable) file which is operating system dependent. The C/C++ program is controlled by the

operating system whereas, the execution of a Java program is controlled by JVM (Java Virtual Machine).

The JVM is the Java run-time system and is the main component of making the java a platform independent

language. For building and running a java application we need JDK(Java Development Kit) which comes

bundled with Java runtime environment(JRE) and JVM. With the help of JDK the user compiles and runs

his java program. As the compilation of java program starts the Java Bytecode is created i.e. a .class file is

created by JRE. Bytecode is a highly optimized set of instructions designed to be executed by JVM. Now

the JVM comes into play, which is made to read and execute this bytecode. The JVM is linked with operating

system and runs the bytecode to execute the code depending upon operating system. Therefore, a user can

take this class file(Bytecode file) formed to any operating systemwhich is having a JVM installed and can

run his program easily without even touching the syntax of a program and without actually having the source

code. The .class file which consists of bytecode is not user-understandable and can be interpreted by JVM

only to build it into the machine code.

Remember, although the details of the JVM will differ from platform to platform, all understand the same

Java bytecode. If a Java program were compiled to native code, then different versions of the same program

Object Oriented programming with Java BCS306A

 18CS653

2

Department of Computer Science and Engineering, ATMECE, Mysuru

would have to exist for each type of CPU connected to the Internet. This is, of course, not a feasible solution.

Thus, the execution of bytecode by the JVM is the easiest way to create truly portable programs. Java also

has the standard data size irrespective of operating system or the processor. These features make the java as

a portable (platform-independent) language.

Object Oriented programming with Java BCS306A

 18CS653

3

Department of Computer Science and Engineering, ATMECE, Mysuru

Usually, when a program is compiled to an intermediate form and then interpreted by a virtual machine, it

runs slower than it would run if compiled to executable code. To improve the performance, Java provides a

Just-in-time (JIT) compiler for bytecode. JIT compilers alter the role of the JVM a little by directly

compiling Java bytecode into native platform code, thereby relieving the JVM of its need to manually call

underlying native system services. When JIT compiler is installed, instead of the JVM calling the underlying

native operating system, it calls the JIT compiler. The JIT compiler in turn generates native code that can

be passed on to the native operating system for execution. This makes the java program torun faster than

expected.

Moreover, when a JIT compiler is part of the JVM, selected portions of bytecode are compiled into

executable code in real time, on a piece-by-piece, demand basis. It is important to understand that it is

not practical to compile an entire Java program into executable code all at once, because Java performs

various run-time checks. Instead, a JIT compiler compiles code as it is needed, during execution.

Furthermore, not all sequences of bytecode are compiled—only those that will benefit from compilation.

The remaining code is simply interpreted.

 Object-Oriented Programming

Java is purely object oriented programming (OOP) language. Here, we will discuss the basics of OOPs

concepts.

Two Paradigms

Every program consists of two elements viz. code and data. A program is constructed based on two

paradigms: a program written around what is happening (known as process-oriented model) and a

program written around who is being affected (known as object-oriented model). In process oriented

model, the program is written as a series of linear (sequential) steps and it is thought of as code acting on

data. Since this model fails to focus on real-world entities, it will create certain problems as the program

grows larger.

The object-oriented model focuses on real-world data. Here, the program is organized as data and a set of

well-defined interfaces to that data. Hence, it can be thought of as data controlling access to code. This

approach helps to achieve several organizational benefits.

Abstraction

Abstraction can be thought of as hiding the implementation details from the end-user. A powerful way

to manage abstraction is through the use of hierarchical classifications. This allows us to layer the semantics

of complex systems, breaking them into more manageable pieces. For example, we consider a car as a

vehicle and can be thought of as a single object. But, from inside, car is a collection of several subsystems

viz. steering, brakes, sound system, engine etc. Again, each of these subsystems is a collection of individual

parts (Ex. Sound system is a combination of a radio and CD/tape player). As an owner of the car, we manage

it as an individual entity by achieving hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs. The data from a

traditional process-oriented program can be transformed by abstraction into its component objects. A

sequence of process steps can become a collection of messages between these objects. Thus, each of these

objects describes its own unique behavior. You can treat these objects as concrete entities that respond to

messages telling them to do something. This is the essence of object-oriented programming.

Object Oriented programming with Java BCS306A

 18CS653

4

Department of Computer Science and Engineering, ATMECE, Mysuru

OOPs Principles: Encapsulation, Inheritance and Polymorphism are the basic principles of any object

oriented programming language.

Encapsulation is the mechanism to bind the data and code working on that data into a single entity. It

provides the security for the data by avoiding outside manipulations. In Java, encapsulation is achieved

using classes. A class is a collection of data and code. An object is an instance of a class. That is, several

objects share a common structure (data) and behavior (code) defined by that class. A class is a logical entity

(or prototype) and an object is a physical entity. The elements inside the class are known asmembers.

Specifically, the data or variables inside the class are called as member variables orinstance variables or

data members. The code that operates on these data is referred to as member methods or methods (In

C++, we term this as member function). The method operating on data will define the behavior and interface

of a class.

Another purpose of the class is to hide the information from outside manipulation. Class uses public and

private interfaces. The members declared as private can only be accessed by the members of that class,

whereas, the public members can be accessed from outside the class.

Inheritance allows us to have code re-usability. It is a process by which one object can acquire the properties

of another object. It supports the concept of hierarchical classification. For example, consider alarge group
of animals having few of the abstract attributes like size, intelligence, skeletal structure etc. and having

behavioral aspects like eating, breathing etc. Mammals have all the properties of Animals and also have

their own specific features like type of teeth, mammary glands etc. that make them different from Reptiles.

Similarly, Cats and Dogs have all the characteristics of mammals, yet with few features which are unique
for themselves. Though Doberman, German-shepherd, Labrador etc. have the features of Dog class, they

have their own unique individuality. This concept can be depicted using following figure.

Figure 1.1 Example of Inheritance

If we apply the above concept for programming, it can be easily understood that a code written is reusable.

Thus, in this mechanism, it is possible for one object to be a specific instance of a more general case.

Using inheritance, an object need only define those qualities that make it a unique object within its class. It

can inherit its general attributes from its parent. Hence, through inheritance, we can achieve

generalization- specialization concept. The top-most parent (or base class or super class) class is the

generalized class

...

Object Oriented programming with Java – BCS306A

5

Department of Computer Science and Engineering, ATMECE, Mysuru

and the bottom-most child (or derived class or subclass) class is a more specialized class with specific

characteristics.

Inheritance interacts with encapsulation as well. If a given class encapsulates some attributes, then any

subclass will have the same attributes plus any that it adds as part of its specialization. This is a key concept

that lets object-oriented programs grow in complexity linearly rather than geometrically. A new subclass

inherits all of the attributes of all of its ancestors. It does not have unpredictable interactions with the

majority of the rest of the code in the system.

Polymorphism can be thought of as one interface, multiple methods. It is a feature that allows one interface

to be used for a general class of actions. The specific action is determined by the exact nature

of the situation. Consider an example of performing stack operation on three different types of data viz.

integer, floating-point and characters. In a non-object oriented programming, we write functions with

different names for push and pop operations though the logic is same for all the data types. But in Java, the

same function names can be used with data types of the parameters being different.

 A First Simple Program

Here, we will discuss the working of a Java program by taking an example –

Program 1.1 Illustration of First Java Program

class Prg1
{

public static void main(String args[])
{

System.out.println(“Hello World!!!”);

}

}

Save this program as Prg1.java. A java program source code is a text file containing one or more class

definitions is called as compilation unit and the extension of this file name should be .java.

To compile above program, use the following statement in the command prompt –

javac Prg1.java

(Note: You have to store the file Prg1.java in the same location as that of javac compiler or you should set

the Environment PATH variable suitably.)

Now, the javac compiler creates a file Prg1.class containing bytecode version of the program, which can be

understandable by JVM. To run the program, we have to use Java application launcher called java. That is,

use the command –
java Prg1

The output of the program will now be displayed as –

Hello World!!!

Object Oriented programming with Java – BCS306A

6

Department of Computer Science and Engineering, ATMECE, Mysuru

Note: When java source code is compiled, each class in that file will be put into separate output file having
the same name as of the respective class and with the extension of .class. To run a java code, we need a

class file containing main() function (Though, we can write java program without main(), for the time-being

you assume that we need a main() function!!!). Hence, it is a tradition to give the name of thejava source

code file as the name of the class containing main() function.

Let us have closer look at the terminologies used in the above program now –

class is the keyword to declare a class.

Prg1 is the name of the class. You can use any valid identifier for a class name.

main() is name of the method from which the program execution starts.
public is a keyword indicating the access specifier of the method. The public members can be

accessed from outside the class in which they have been declared. The main() function must

be declared as public as it needs to be called from outside the class.

static The keyword static allows main() to be called without having to instantiate a particular

instance of the class. This is necessary since main() is called by the Java Virtual Machine

before any objects are made.
void indicates that main() method is not returning anything.
String args[] The main() method takes an array of String objects as a command-line argument.

System is a predefined class (present in java.lang package) which gives access to the system. It

contains pre-defined methods and fields, which provides facilities like standard input, output,

etc.
out is a static final (means not inheritable) field (ie, variable)in System class which is of the

type PrintStream (a built-in class, contains methods to print the different data values). Static

fields and methods must be accessed by using the class name, so we need to use System.out.
println is a public method in PrintStream class to print the data values. After printing the data, the

cursor will be pushed to the next line (or we can say that, the data is followed by a new line).

 A Second Short Program

Here, we will discuss a program having variables. Variable is a named memory location which may be
assigned a value in the program. A variable can be declared in the java program as –

type var_name;

Here, type is any built-in or user-defined data type (We will discuss various data types later in detail).

var_name is any valid name given to the variable. Consider the following example –

Program 1.2 Illustrating usage of variables

class Prg2
{

public static void main(String args[])
{

int n;
n=25;

System.out.println(“The value of n is: “ + n);n= n*3;

System.out.print(“The current value of n is: “);
System.out.println(n);

}

}

Object Oriented programming with Java – BCS306A

7

Department of Computer Science and Engineering, ATMECE, Mysuru

The output will be –

Object Oriented programming with Java – BCS306A 8

Department of Computer Science and Engineering, ATMECE, Mysuru

The value of n is: 25

The current value of n is: 75

In the above program, we have declared an integer variable n and then assigned a value to it. Now, observe

the statement,
System.out.println(“The value of n is: “ + n);

Here, we are trying to print a string value “The value of n is:” and also value of an integer n together. For

this, we use + symbol. Truly speaking, the value of n is internally converted into string type and then

concatenated with the string “The value of n is:”. We can use + symbol as many times as we want to print

several values.

The above program uses one more method System.out.print() which will keep the cursor on the same line
after displaying the output. That is, no new line is not included in it.

 Two Control Statements

Though control structures are discussed in Module 2, here we will glance two important structures which

are needed for some of the examples in the current Module.

if Statement: When a block of code has to be executed based on the value of a condition, if statement is

used. Syntax would be –
if(condition)
{

//do something

}

Here, conditionhas to be Boolean statement (unlike C/C++, where it could be integer type). If the
condition is true, the statement block will be executed, otherwise not.

To have a Boolean result from an expression, we may use relational operators like <, >, <=, == etc.

Program 1.3 Illustration of if statement

class IfSample
{

public static void main(String args[])
{

int x, y;

x = 10;

y = 20;

if(x < y)

System.out.println("x is less than y");

x = x * 2;

if(x == y)

System.out.println("x now equal to y");

x = x * 2;

Object Oriented programming with Java – BCS306A 9

Department of Computer Science and Engineering, ATMECE, Mysuru

if(x > y)

System.out.println("x now greater than y");

if(x == y)

System.out.println("you won't see this");

}

}

The output would be –

x is less than yx now

equal to y

x now greater than y

for Statement: Whenever a set of statements has to be executed multiple times, we will use for

statement. The syntax would be –

for(initialization; condition; updation)
{

//statement block

}

Here, initialization contains declaring and/or initialization of one or more variables, that

happens only once
condition Must be some Boolean expression, that will be checked immediately after

initialization and each time when there is an updation of variables

updation Contains increment/decrement of variables, that will be executed after
executing statement block

Program 1.4 Illustration of for statement

class ForTest
{

public static void main(String args[])
{

int x;

for(x = 0; x<5; x = x+1) System.out.println("This is x: " + x);

}

}

This program generates the following output:
This is x: 0

This is x: 1

This is x: 2

This is x: 3

This is x: 4

Object Oriented programming with Java – BCS306A

10

Department of Computer Science and Engineering, ATMECE, Mysuru

 Using Blocks of Code

Java allows two or more statements to be grouped into blocks of code, also called code blocks. This is done

by enclosing the statements between opening and closing curly braces. Once a block of code has been

created, it becomes a logical unit that can be used any place that a single statement can.

For example, a block can be a target for Java’s if and for statements. Consider this if statement:

if(x < y)

{ // block begins

 x = y;

y = 0;

} // block ends here

The main reason for the existence of blocks of code is to create logically inseparable units of code.

 Lexical Issues

Java programs are a collection of whitespace, identifiers, literals, comments, operators, separators, and

keywords. We will discuss the significance of each of these here.

Whitespace : In Java, whitespace is a space, tab or newline. Usually, a space is used to separate tokens;

tab and newline are used for indentation.

Identifiers : Identifiers are used for class names, method names, and variable names. An identifier may

be any sequence of uppercase and lowercase letters, numbers, or the underscore and dollar-

sign characters. They must not begin with a number. As Java is case-sensitive, Avg is a

different identifier than avg.

Examples of valid identifiers: Avg, sum1, $x, sum_sq etc.

Examples of invalid identifiers: 2sum, sum-sq, x/y etc.

Literals : A constant value in Java is created by using a literal representation of it. For example, 25

(an integer literal), 4.5 (a floating point value), ‘p’ (a character constant, “Hello World” (a

string value).

Comments : There are three types of comments defined by Java. Two of these are well-know viz.

single-line comment (starting with //), multiline comment (enclosed within /* and */).

The third type of comment viz. documentation comment is used to produce an HTML file

that documents your program. The documentation comment begins with a /** and ends

with a */.

Separators : In Java, there are a few characters that are used as separators. The most commonly used

separator in Java is the semicolon which is used to terminate statements. The separators are

shown in the following table:

Object Oriented programming with Java – BCS306A

11

Department of Computer Science and Engineering, ATMECE, Mysuru

Sym
bol

Name Purpose

() Parentheses Used to provide parameter list in method definition and to call methods.
Also used for defining precedence in expressions, containing expressions in
control statements, and surrounding cast types.

{ } Braces Used to initialize arrays, to define a block of code, for classes, methods,
and local scopes.

[] Brackets Used to declare array types, to dereference array values.
; Semicolon Terminates statements.
, Comma Separates consecutive identifiers in a variable declaration. Also used to

chain statements together inside a for statement.
. Period Used to separate package names from sub-packages and classes. Also

used to separate a variable or method from a reference variable.

Keywords : There are 50 keywords currently defined in the Java language as shown in the following table.

These keywords, combined with the syntax of the operators and separators, form the foundation of the Java

language. These keywords cannot be used as names for a variable, class, or method.

Abstract assert boolean break Byte case catch Char Class Const
Continue default goto do double else enum Extends Final Finally
Float For if implements import instanceof int interface Long Native
New package private protected public return short Static Strictfp Super
Switch synchronize

d
this throw throws transient try Void While

The keywords const and goto are reserved but are rarely used. In addition to the keywords,

Java reserves the following: true, false, and null. These are values defined by Java. You may

not use these words for the names of variables, classes and so on.

 The Java Class Libraries

The sample programs discussed in previous sections make use of two of Java’s built-in methods: println()

and print(). As mentioned, these methods are members of the System class, which is a class predefined by

Java that is automatically included in your programs. In the larger view, the Java environment relies on

several built-in class libraries that contain many built-in methods that provide support for such things as I/O,

string handling, networking, and graphics. The standard classes also provide support for windowed output.

Thus, Java is a combination of the Java language itself, plus its standard classes. The class libraries provide

much of the functionality that comes with Java. The standard library classes and methods are described in

detail in forthcoming chapters.

 Java is a Strongly Typed Language

A strongly-typed programming language is one in which each type of data (such as integer, character,

hexadecimal, packed decimal, and so forth) is predefined as part of the programming language and all

constants or variables defined for a given program must be described with one of the data types. Certain

operations may be allowable only with certain data types.

In other words, every variable has a type, every expression has a type, and every type is strictly defined.

And, all assignments, whether explicit or via parameter passing in method calls, are checked for type

compatibility. There are no automatic coercions or conversions of conflicting types as in some languages.

The Java compiler checks all expressions and parameters to ensure that the types are compatible. Any type

mismatches are errors that must be corrected before the compiler will finish compiling the class. These

features of Java make it a strongly typed language.

Object Oriented programming with Java – BCS306A

12

Department of Computer Science and Engineering, ATMECE, Mysuru

 The Primitive Types

Java defines eight primitive (or simple) data types viz.
 byte, short, int, long : belonging to Integers group involving whole-valued signed numbers.

 char : belonging to Character group representing symbols in character set like alphabets, digits,

special characters etc.
 float, double : belonging to Floating-point group involving numbers with fractional part.

 boolean : belonging to Boolean group, a special way to represent true/false values.

These types can be used as primitive types, derived types (arrays) and as member of user-defined types

(classes). All these types have specific range of values irrespective of the platform in which the program

being run. In C and C++ the size of integer may vary (2 bytes or 4 bytes) based on the platform. Becauseof

platform-independent nature of Java, such variation in size of data types is not found in Java, and thus

making a Java program to perform better.

Integers

Java defines four integer types viz. byte, short, int and long. All these are signed numbers and Java does

not support unsigned numbers. The width of an integer type should not be thought of as the amountof storage

it consumes, but rather as the behaviour it defines for variables and expressions of that type. The Java run-

time environment is free to use whatever size it wants, as long as the types behave as you declared them.

The width and ranges of these integer types vary widely, as shown in this table:

Name
Width

(in bits)
Range

long 64 -263 to +263 –1

int 32 -231 to +231 –1

short 16 -215 to +215 –1 (-32768 to +32767)

byte 8 -27 to +27 –1 (-128 to +127)

byte : This is the smallest integer type. Variables of type byte are especially useful when you are working

with a stream of data from a network or file. They are also useful when you are working with raw

binary data that may not be directly compatible with Java’s other built-in types. Byte variables are

declared by use of the byte keyword. For example,

byte b, c;

short : It is probably the least-used Java type. Here are some examples of short variable declarations:short

s;
short t;

int : The most commonly used integer type is int. In addition to other uses, variables of type int are

commonly employed to control loops and to index arrays. Although you might think that using a

byte or short would be more efficient than using an int in situations in which the larger range of

an int is not needed, this may not be the case.

Object Oriented programming with Java – BCS306A

13

Department of Computer Science and Engineering, ATMECE, Mysuru

The reason is that when byte and short values are used in an expression they are promoted to int when

the expression is evaluated. (Type promotion is described later in this chapter.) Therefore, int is

often the best choice when an integer is needed.

long : It is useful for those occasions where an int type is not large enough to hold the desired value.

The range of a long is quite large. This makes it useful when big, whole numbers are needed.

Program 1.5: Program to illustrate need for long data type

class Light
{

public static void main(String args[])
{

int lightspeed;

long days, seconds, distance;

// approximate speed of light in miles per second

lightspeed = 186000;

days = 1000; // specify number of days here

seconds = days * 24 * 60 * 60; // convert to seconds
distance = lightspeed * seconds; // compute distance

System.out.print("In " + days);

System.out.print(" days light will travel about ");

System.out.println(distance + " miles.");

}

}

The output will be –
In 1000 days light will travel about 16070400000000 miles.

Floating –Point Types

Floating-point (or real) numbers are used when evaluating expressions that require fractional precision. Java

implements the standard (IEEE–754) set of floating-point types and operators. There are two kinds of

floating-point types, float and double, which represent single- and double-precision numbers, respectively.

Their width and ranges are shown here:

Name
Width

(in bits)
Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

float : The type float specifies a single-precision value that uses 32 bits of storage. Single precision

is faster on some processors and takes half as much space as double precision, but will

become imprecise when the values are either very large or very small. Variables oftype float

are useful when you need a fractional component, but don’t require a large degree of

precision. For example, float can be useful when representing currencies, temperature etc.

Object Oriented programming with Java – BCS306A

14

Department of Computer Science and Engineering, ATMECE, Mysuru

Here are some example float variable declarations:

Object Oriented programming with Java – BCS306A

15

Department of Computer Science and Engineering, ATMECE, Mysuru

float hightemp, lowtemp;

double : Double precision is actually faster than single precision on some modern processors that

have been optimized for high-speed mathematical calculations. All transcendental math

functions, such as sin(), cos(), and sqrt(), return double values. When you need to maintain

accuracy over many iterative calculations, or are manipulating large-valued numbers, double

is the best choice.

Program 1.6 Finding area of a cirlce

class Area
{

public static void main(String args[])

{

double pi, r, a;

r = 10.8;

pi = 3.1416;

a = pi * r * r;
System.out.println("Area of circle is " + a);

}
}

The output would be –

Area of circle is 366.436224

Characters

In Java, char is the data type used to store characters. In C or C++, char is of 8 bits, whereas in Java it

requires 16 bits. Java uses Unicode to represent characters. Unicode is a computing industry standard for

the consistent encoding, representation and handling of text expressed in many languages of the world.

The range of a char is 0 to 65,536. The standard set of characters known as ASCII still ranges from 0 to

127 as always, and the extended 8-bit character set, ISO- Latin-1, ranges from 0 to 255. Since Java is

designed to allow programs to be written for worldwide use, it makes sense that it would use Unicode to

represent characters. Though it seems to be wastage of memory,as the languages like English, German etc.

can accommodate their character set in 8 bits, for a global usage point of view, 16-bits are necessary.

Though, char is designed to store Unicode characters, we can perform arithmetic operations on them. For

example, we can add two characters, increment/decrement character variable etc. Consider the following

example for the demonstration of characters.

Program 1.7 Demonstration of char data type

class CharDemo
{

public static void main(String args[])
{

char ch1=88, ch2=’Y’;

Object Oriented programming with Java – BCS306A

16

Department of Computer Science and Engineering, ATMECE, Mysuru

System.out.print("ch1 and ch2: ");

System.out.println(ch1 + " " + ch2);

ch1++; //increment in ASCII (even Unicode) value

System.out.println("ch1 now contains "+ch1);

--ch2; //decrement in ASCII (even Unicode) value

System.out.println("ch2 now contains "+ch2);

/* ch1=35;

ch2=30;

char ch3;

ch3=ch1+ch2; //Error

*/

ch2='6'+'A'; //valid

System.out.println("ch2 now contains "+ch2);

}

}

The output would be –

ch1 and ch2: X Y

ch1 now contains Y

ch2 now contains X

ch2 now contains w

Booleans

For storing logical values (true and false), Java provides this primitive data type. Boolean is the output of

any expression involving relational operators. For control structures (like if, for, while etc.) we need to give

boolean type. In Java, the output of relational operators will be true or false. Consider the following

program as an illustration.

Program 1.8 Demonstration of Boolean data type

class BoolDemo
{

public static void main(String args[])
{

boolean b = false;

System.out.println("b is " + b);
b = true;

System.out.println("b is " + b);

if(b)

System.out.println("True block");

Object Oriented programming with Java – BCS306A

17

Department of Computer Science and Engineering, ATMECE, Mysuru

b = false;

if(b)

 System.out.println("False Block ");

b=(3<5);

System.out.println("3<5 is " +b);

}
}

The output would be –

b is false

b is true

True block

3<5 is true

NOTE: Size of a Boolean data type is JVM dependent. But, when Boolean variable appears in an

expression, Java uses 32-bit space (as int) for Boolean to evaluate expression.

 A Closer Look at Literals

A literal is the source code representation of a fixed value. In other words, by literal we mean any

number, text, or other information that represents a value. Literals are represented directly in our code

without requiring computation. Here we will discuss Java literals in detail.

Integer Literals

Integers are the most commonly used type in the typical program. Any whole number value is an integer

literal. For example, 1, 25, 33 etc. These are all decimal values, having a base 10. With integer literals we

can use octal (base 8) and hexadecimal (base 16) also. Octal values are denoted in Java by a leading zero.

Normal decimal numbers cannot have a leading zero. Thus, a value 09 will produce an error from the

compiler, since 9 is outside of octal’s 0 to 7 range. Hexadecimal constants denoted with a leading zero-x,

(0x or 0X). The range of a hexadecimal digit is 0 to 15, so A through F (or a through f) are substituted for

10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. It is possible to assign an integer

literal to other integer types like byte or long. When a literal value is assigned to a byte or short variable,

no error is generated if the literal value is within the range of the target type. An integer literal can always

be assigned to a long variable. However, to specify a long literal, you will need to explicitly tell the compiler

that the literal value is of type long. You do this by appending an upper- or lowercase L to the literal. For

example, 0x7ffffffffffffffL or 9223372036854775807L is the largest long. An integer can also be assigned

to a char as long as it is within range.

Floating-Point Literals

Floating-point numbers represent decimal values with a fractional component. They can be expressed in

either standard or scientific notation. Standard notation consists of a whole number component followed by

a decimal point followed by a fractional component. For example, 2.0, 3.14159, and 0.6667 represent valid

standard-notation floating-point numbers. Scientific notation uses a standard-notation, floating-point

number plus a suffix that specifies a power of 10 by which the number is to be multiplied. The exponent is

indicated by an E or e followed by a decimal number, which can be positive or negative. Examples include

6.022E23, 314159E–05, and 2e+100.

Object Oriented programming with Java – BCS306A

18

Department of Computer Science and Engineering, ATMECE, Mysuru

Floating-point literals in Java default to double precision. To specify a float literal, you must append an F

or f to the constant. You can also explicitly specify a double literal by appending a D or d. Doing so is, of

course, redundant. The default double type consumes 64 bits of storage, while the less-accurate float type

requires only 32 bits.

Boolean Literals

Boolean literals are simple. There are only two logical values that a boolean value can have, true and false.

The values of true and false do not convert into any numerical representation. The true literal in Java does

not equal 1, nor does the false literal equal 0. In Java, they can only be assigned to variables declared as

boolean, or used in expressions with Boolean operators.

Character Literals

Characters in Java are indices into the Unicode character set. They are 16-bit values that can be converted

into integers and manipulated with the integer operators, such as the addition and subtraction operators. A
literal character is represented inside a pair of single quotes. All of the visible ASCII characters can be

directly entered inside the quotes, such as ‘a’, ‘z’, and ‘@’. For characters that are impossible to enter

directly, there are several escape sequences that allow you to enter the character you need, such as ‘\’’ for

the single-quote character itself and ‘\n’ for the new-line character. There is also a mechanism for directly
entering the value of a character in octal or hexadecimal. For octal notation, use the backslash followed by

the three-digit number. For example, ‘\141’ is the letter ‘a’. For hexadecimal, you enter a backslash-u (\u),

then exactly four hexadecimal digits. Following table shows the character escape sequences.

Escape Sequence Description
\ddd Octal character (ddd)
\uxxxx Hexadecimal Unicode character (xxxx)
\' Single quote
\” Double quote
\\ Back slash
\r Carriage return (Enter key)
\n New line (also known as line feed)
\f Form feed
\t Tab
\b Back space

String Literals

String literals are a sequence of characters enclosed within a pair of double quotes. Examples of string

literals are

“Hello World”
“two\nlines”

“\“This is in quotes\””

Java strings must begin and end on the same line. There is no line-continuation escape sequence as there is

in some other languages. In Java, strings are actually objects and are discussed later in detail.

 Variables

The variable is the basic unit of storage. A variable is defined by the combination of an identifier, a type,
and an optional initializer. In addition, all variables have a scope, which defines their visibility, and a

Object Oriented programming with Java – BCS306A

19

Department of Computer Science and Engineering, ATMECE, Mysuru

lifetime.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable declarationis

shown here:

type identifier [= value][, identifier [= value] ...] ;

The type is any of primitive data type or class or interface. The identifier is the name of the variable. We

can initialize the variable at the time of variable declaration. To declare more than one variable of the

specified type, use a comma-separated list. Here are several examples of variable declarations of various

types. Note that some include an initialization.

int a, b=5, c; byte z =

22; double pi = 3.1416;

char x = '$';

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java allows variables to be

initialized dynamically, using any expression valid at the time the variable is declared. For example,

int a=5, b=4;

int c=a*2+b; //variable declaration and dynamic initialization

The key point here is that the initialization expression may use any element valid at the time of the

initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

A variable in Java can be declared within a block. A block is begun with an opening curly brace and

ended by a closing curly brace. A block defines a scope which determines the accessibility of variables

and/or objects defined within it. It also determines the lifetime of those objects.

Java has two scopes viz. class level scope and method (or function) level scope. Class level scope is

discussed later and we will discuss method scope here.

The scope defined by a method begins with its opening curly brace. However, if that method has parameters,

they too are included within the method’s scope. As a general rule, variables declared inside a scope are not

visible (that is, accessible) to code that is defined outside that scope. Thus, when you declare a variable

within a scope, you are localizing that variable and protecting it from unauthorized access and/or

modification. objects declared in the outer scope will be visible to code within the inner scope. However,

the reverse is not true. Objects declared within the inner scope will not be visible outside it.

Object Oriented programming with Java – BCS306A

20

Department of Computer Science and Engineering, ATMECE, Mysuru

Variables are created when their scope is entered, and destroyed when their scope is left. This means that a

variable will not hold its value once it has gone out of scope. Also, a variable declared within a block will

lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

Program 1.9 Demonstration of scope of variables

class Scope
{

public static void main(String args[])
{

int x=10, i; // x and i are local to main()

if(x == 10)
{

int y = 20; // y is local to this block

System.out.println("x and y: " + x + " " + y);

x = y * 2;
}

// y = 100; //y cannot be accessed here

System.out.println("x is " + x);

 System.out.println(“y is “ +y);

for(i=0;i<3;i++)
{

int a=3; // a is local to this block
System.out.println("a is " + a);

a++;

}

}

}

The output would be –
x and y: 10 20
x is 40
a is 3
a is 3
a is 3

Note that, variable a is declared within the scope of for loop. Hence, each time the loop gets executed,
variable a is created newly and there is no effect of a++ for next iteration.

Object Oriented programming with Java – BCS306A

21

Department of Computer Science and Engineering, ATMECE, Mysuru

 Type Conversion and Casting

It is quite common in a program to assign value of one type to a variable of another type. If two types are

compatible, Java performs implicit type conversion. For example, int to long is always possible. But,

whenever the types at two sides of an assignment operator are not compatible, then Java will not do the

conversion implicitly. For that, we need to go for explicit type conversion or type casting.

Java’s Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion will take

place if the following two conditions are met:

 The two types are compatible.

 The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int type is always

large enough to hold all valid byte values, so no explicit cast statement is required. For widening

conversions, the numeric types, including integer and floating-point types, are compatible with each other.

However, there are no automatic conversions from the numeric types to char or boolean. Also, char and

boolean are not compatible with each other. As mentioned earlier, Java also performs an automatic type

conversion when storing a literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all needs. For example, what

ifyou want to assign an int value to a byte variable? This conversion will not be performed automatically,

because a byte is smaller than an int. This kind of conversion is sometimes called a narrowing conversion,

since you are explicitly making the value narrower so that it will fit into the target type. To create a

conversion between two incompatible types, we must use a cast. A cast is simply an explicit typeconversion.

It has this general form:
(target-type) value

Here, target-type specifies the desired type to convert the specified value to. For example,

int a;

byte b;
b = (byte) a;

When a floating-point value is assigned to an integer type, the fractional component is lost. And such

conversion is called as truncation (narrowing). If the size of the whole number component is too large

to fit into the target integer type, then that value will be reduced modulo the target type’s range. Following

program illustrates various situations of explicit casting.

Object Oriented programming with Java– BCS306A

22

Department of Computer Science and Engineering, ATMECE, Mysuru

Program 1.10 Illustration of type conversion

class Conversion
{

public static void main(String args[])
{

byte b;

int i = 257;

double d = 323.142;

System.out.println("\nConversion of int to byte.");

b = (byte) i;

System.out.println("i and b " + i + " " + b);

System.out.println("\nConversion of double to int.");

i = (int) d;

System.out.println("d and i " + d + " " + i);

System.out.println("\nConversion of double to byte.");

b = (byte) d;

System.out.println("d and b " + d + " " + b);

}

}

The output would be –

Conversion of int to byte: i = 257 b = 1

Conversion of double to int: d = 323.142 i = 323

Conversion of double to byte: d = 323.142 b = 67

Here, when the value 257 is cast into a byte variable, the result is the remainder of the division of 257 by

256 (the range of a byte), which is 1 in this case. When the d is converted to an int, its fractional component

is lost. When d is converted to a byte, its fractional component is lost, and the value is reduced modulo 256,

which in this case is 67.

 Automatic Type promotion in Expression

Apart from assignments, type conversion may happen in expressions also. In an arithmetic expression

involving more than one operator, some intermediate operation may exceed the size of either of the

operands. For example,

byte x=25, y=80, z=50;

int p= x*y/z ;

Here, the result of operation x*y is 4000 and it exceeds the range of both the operands i.e. byte (-128 to

+127). In such a situation, Java promotes byte, short and char operands to int That is, the operation x*y is

performed using int but not byte and hence, the result 4000 is valid.

Object Oriented programming with Java – BCS306A

23

Department of Computer Science and Engineering, ATMECE, Mysuru

On the other hand, the automatic type conversions may cause error. For example,

byte x=10;
byte y= x *3; //causes error!!!

Here, the result of x *3 is 30, and is well within the range of byte. But, for performing this operation, the

operands are automatically converted to byte and the value 30 is treated as of int type. Thus, assigningan

int to byte is not possible, which generates an error. To avoid such problems, we should use type casting.

That is,
byte x=10;
byte y=(byte) (x *3); //results 30

Type Promotion Rules

Java defines several type promotion rules that apply to expressions. They are as follows:
 All byte, short, and char values are promoted to int.
 If one operand is a long, the whole expression is promoted to long.
 If one operand is a float, the entire expression is promoted to float.

 If any of the operands is double, the result is double.

Program 1.11 Demonstration of type promotions

class TypePromo
{

public static void main(String args[])
{

byte b = 42;

char c = 'a';

short s = 1024;

int i = 50000;

float f = 5.67f;

double d = .1234;

double result = (f * b) + (i / c) - (d * s);

System.out.println("result = " + result);

}

}

The output would be –

result = 626.7784146484375

Let’s look closely at the type promotions that occur in this line from the program:

double result = (f * b) + (i / c) - (d * s);

In the first sub-expression, f * b, b is promoted to a float and the result of the sub-expression is float. Next,

in the sub-expression i / c, c is promoted to int, and the result is of type int. Then, in d * s, the value of s is

Object Oriented programming with Java – BCS306A

24

Department of Computer Science and Engineering, ATMECE, Mysuru

promoted to double, and the type of the sub-expression is double. Finally, these three intermediate values,

float, int, and double, are considered. The outcome of float plus an int is a float. Then the resultant float

minus the last double is promoted to double, which is the type for the final resultof the expression.

 Arrays

Array is a collection of related items of same data type. Many items of an array share common name and

are accessed using index. Array can be one dimensional or multi-dimensional.

One Dimensional Arrays
It is a list of related items. To create 1-d array, it should be declared as –

type arr_name[];
Here, type determines the data type of elements of arr_name. In Java, the above declaration will not allocate
any memory. That is, there is no physical existence for the array now. To allocate memory, we should use

new operator as follows:
arr_name=new type[size];

Here, size indicates number of elements in an array. The new keyword is used because, in Java array requires

dynamic memory allocation. The above two statements can be merged as –
type arr_name[]=new type[size];

For example, following statement create an array of 10 integers –

int arr[]=new int[10];
Array index starts with 0 and we can assign values to array elements as –

arr[0]=25; arr[1]=32; and so
on.

Arrays can be initialized at the time of declaration. An array initializer is a list of comma-separated

expressions surrounded by curly braces. The commas separate the values of the array elements. The array

will automatically be created large enough to hold the number of elements you specify in the array initializer.

There is no need to use new. For example –
int arr[] ={1, 2, 3, 4};

The above statement creates an integer array of 4 elements.

Java strictly checks to make sure you do not accidentally try to store or reference values outside of the range

of the array. The Java run-time system will check to be sure that all array indexes are in the correctrange. If

you try to access elements outside the range of the array (negative numbers or numbers greaterthan the

length of the array), you will get a run-time error.

Multidimensional Arrays

Multidimensional arrays are arrays of arrays. Here, we will discuss two dimensional arrays in Java. The

declaration of 2-d array is as follows –

type arr_name[][]=new type[row_size][col_size];

here, row_size and col_size indicates number of rows and columns of 2-d arrays. In other words, row-size

indicates number of 1-d arrays and col_size indicates size of each of such 1-d array. Consider the following

program –

Object Oriented programming with Java – BCS306A

25

Department of Computer Science and Engineering, ATMECE, Mysuru

Program 1.12 Demonstration of 2-d array

class TwoDArray
{

public static void main(String args[])
{

int twoD[][]= new int[3][4];
int i, j;

for(i=0; i<3; i++)

for(j=0; j<4; j++)

twoD[i][j] = i+j;

for(i=0; i<3; i++)
{

for(j=0; j<4; j++)

System.out.print(twoD[i][j] + " ");

System.out.println();

}
}

}
The output would be –

0 1 2 3
1 2 3 4
2 3 4 5

Object Oriented programming with Java – BCS306A

26

Department of Computer Science and Engineering, ATMECE, Mysuru

Instead of allocating memory for 2-day as shown in the above program, we can even do it in a different way.

We can first mention row_size and then using different statements, mention col_size as shown below –

int twoD[][]= new int[3][];

twoD[0]=new int[4] ;

twoD[1]=new int[4] ;

twoD[2]=new int[4] ;

But, above type of allocation is not having any advantage unless we need uneven or irregular

multidimensional array. In Java, it is possible to have different number of columns for each row in a 2-d

array. For example,

Program 1.13 Demonstration of irregular arrays

class UnevenArr
{

public static void main(String args[])
{

int twoD[][] = new int[3][];

twoD[0] = new int[3];

twoD[1] = new int[1];

twoD[2] = new int[5];

int i, j, k = 0;

for(i=0; i<3; i++)

for(j=0; j<twoD[i].length; j++, k++)

twoD[i][j] = k;

for(i=0; i<3; i++)
{

for(j=0; j<twoD[i].length; j++)

System.out.print(twoD[i][j] + " ");
System.out.println();

}
}

}

The output would be –

0 1 2

3

4 5 6 7 8

Object Oriented programming with java – BCS306A 27

Department of Computer Science and Engineering, ATMECE, Mysuru

Here, we have declared a 2-d array with 3 rows. But, number of columns for each row varies. The first 1-d

array has 3 elements, second 1-d array as a single element and the third 1-d array has 5 elements.

A 2-d array can be initialized at the time of declaration as follows –

int a[][]={{1,2},{3,4} };

We can have more than 2 dimensions as –
int a[][][]=new int[3][2][4];

Here, the array elements can be accessed using 3 indices like a[i][j][k].

Alternative Array Declaration Syntax

There is another way of array declaration as given below –
type[] arr_name;

That is, following two declarations are same –
int a[]=new int[3];

int[] a= new int[3];

Both the declarations will create an integer array of 3 elements. Such declarations are useful when we have

multiple array declarations of same type. For example,
int [] a, b, c;

will declare three arrays viz. a, b and c of type integer. This declaration is same as –

int a[], b[], c[];

The alternative declaration form is also useful when specifying an array as a return type for a method.

Object Oriented programming with java – BCS306A 28

Department of Computer Science and Engineering, ATMECE, Mysuru

Object Oriented programming with Java– BCS306A 1

 Operators
Java provides rich set of operators, mainly divided into four groups viz. arithmetic, bitwise, relational and logical.

These operators are discussed here.

 Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are used in algebra. The

following table lists the arithmetic operators:

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus

++ Increment

-- Decrement

+= Addition assignment

-= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

The operands of the arithmetic operators must be of a numeric type. You cannot use them on boolean

types, but you can use them on char types, since the char type in Java is a subset of int.

Note down following few points about various operators:

 Basic arithmetic operators like +, -, * and / behave as expected for numeric data.

 The – symbol can be used as unary operator to negate a variable.

 If / is operated on two integer operands, then we will get only integral part of the result by

truncating the fractional part.

 The % operator returns the remainder after division. It can be applied on integer and floating-point types.
For example,

int x=57;

double y= 32.8;

System.out.println(“on integer “ + x%10); //prints 7
System.out.println(“on double “ + y%10); //prints 2.8

 Compound assignment operators like += will perform arithmetic operation with assignment. That is,

a+=2; a=a+2;
 Increment/decrement operators (++ and --) will increase/decrease the operand by 1. That is,

a++; a=a+1;

b--; b=b-1;

Object Oriented programming with Java– BCS306A 2

 The ++ and -- operators can be used either as pre-increment/decrement or post-

increment/decrement operator. For example,
x= 5;
y=x++; //post increment

Now, value of x (that is 5) is assigned to y first, and x is then incremented to become 6. x= 5;

y=++x; //pre-increment

Now, x is incremented to 6 and then 6 is assigned to y.

NOTE that in C/C++, the % operator cannot be used on float or double and should be used only on integer variable.

 Bitwise Operators
Java defines several bitwise operators that can be applied to long, int, short, char, and byte. These operators act

upon the individual bits of their operands. They are summarized in the following table:

Operator Meaning

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Since bitwise operators manipulate the bits within the integer, let us first understand the bit- representation of

integer data in Java.

All of the integer types are represented by binary numbers of varying bit widths. For example, the byte value for 42
in binary is 00101010, where each position represents a power of two, starting with 20 at the rightmost bit. All of

the integer types are signed integers. Java uses an encoding known as two’s complement, which means that negative

numbers are represented by inverting (changing 1’s to 0’s and vice versa) all of the bits in a value, then adding 1 to

the result. For example, –42 is represented by inverting all of the bits in 42, or 00101010, which yields 11010101,
then adding 1, which results in 11010110, or –42. To decode a negative number, first invert all of the bits, and then

add 1. For example,

–42, or 11010110 inverted, yields 00101001, or 41, so when you add 1 you get 42.

Object Oriented programming with Java– BCS306A 3

Bitwise Logical Operators
The bitwise logical operators are &, |, ^ and ~. Following table shows the result of each operation.

A B A&B A|B A^B ~A

0 0 0 0 0 1

0 1 0 1 1 1

1 0 0 1 1 0

1 1 1 1 0 0

Bitwise NOT
A unary NOT operator ~, also called as bitwise complement inverts all the bits of the operand. For example, the

number 42, which has the following bit pattern: 00101010 becomes 11010101 after the NOT operator is applied.

Bitwise AND
As the name suggests, initially, operands are converted into binary-format. Then, the AND (&) operation is
performed on the corresponding bits of operands. Consider an example –

int x=5, y=6,z;
z= x & y;

Now, this operation is carried out as –

x 0000 0101

y & 0000 0110

z 0000 0100

Thus, z will be decimal equivalent of 0000 0100, which is 4.

Bitwise OR
Here, the OR (|) operations is performed on individual bit of operands. For example –

int x=5, y=6,z;
z= x | y;

Now, this operation is carried out as –

x 0000 0101
y | 0000 0110
z 0000 0111

Thus, z will be decimal equivalent of 0000 0111, which is 7.

Bitwise XOR
In XOR operation, if both bits are same (either both are 1 or both 0), then the resulting bit will be 0 (false).

Otherwise, the resulting bit is 1 (true). For example –

int x=5, y=6,z;
z= x ^ y;

Object Oriented programming with Java– BCS306A 4

Now, this operation is carried out as –

x 0000 0101

y ^ 0000 0110

z 0000 0011

Thus, z will be decimal equivalent of 0000 0011, which is 3.

Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left by a specified number of times. It has this

general form:

value << num

For each shift, one higher order bit is shifted out (or lost) and extra zero is appended as the lower order bit. Thus, for

int, after 31 shifts, all the bits will be lost and result will be 0, whereas for long, after 63 shifts, all bits will be lost.

Java’s automatic type promotions produce unexpected results when you are shifting byte and short values. As you

know, byte and short values are promoted to int when an expression is evaluated. Furthermore, the result of such

an expression is also an int. This means that the outcome of a left shift on a byte or short value will be an int, and

the bits shifted left will not be lost until they shifted for 31 times. To avoid this problem, we should use type-casting

as shown in the following example.

Program 2.1: Demonstration of left-shift operator

class ShiftDemo

{
public static void main(String args[])
{

byte a = 64, b; int i;

i = a << 2;

b = (byte) (a << 2); System.out.println("Original value of a: " + a);

System.out.println("i and b: " + i + " " + b);
}

}

The result would be –

Original value of a: 64 i
and b: 256 0

Since a is promoted to int for evaluation, left-shifting the value 64 (0100 0000) twice results in i containing the

value 256 (1 0000 0000). However, the value in b contains 0 because after the shift, the low-order byte is now zero.

Each left shift can be thought of as multiplying the number by 2. But, one should be careful because once the
number crosses its range during left shift, it will become negative. Consider an illustration –

Program 2.2

class ShiftDemo1
{

Object Oriented programming with Java– BCS306A 5

public static void main(String args[])

{
int i;
int num = 0xFFFFFFE;

for(i=0; i<4; i++)

{
num = num << 1;

System.out.println(num);

}

}
}

The output would be –

536870908

1073741816 //twice the previous value

2147483632 //twice the previous value

-32 //crosses the range of int and hence negative

Right Shift
The right shift operator, >> shifts all of the bits in a value to the right by a specified number of times. It has this

general form:

value >> num

For each shift, one lower order bit is shifted out (or lost) and extra zero is appended as the higher order bit. For

example,

int a = 35; //00100011 is the binary equivalent
a = a >> 2; // now, a contains 8

Each right shift can be thought of as dividing the number by 2. When you are shifting right, the top (leftmost) bit is
filled with the previous content of the top bit. This is called sign extension and is needed to preserve the sign of

negative numbers when you shift them right. For example, –8 >> 1 is –4, which, in binary, is

11111000 (–8)
>>1
11111100 (–4)

Unsigned Right Shift
We have seen that right shift always fills the highest order bit with the previous content of the top bit. But when we

are using shift operation on non-numeric data, sign-bit has no significance. To ignore the sign- bit, we will go for
unsigned right shift. The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all 32 bits

to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with zeros, ignoring normal sign

extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int

>>>24

00000000 00000000 00000000 11111111 255 in binary as an int

Object Oriented programming with Java– BCS306A 6

Bitwise Operator Compound Assignment
We can use compound assignment even with bitwise operators. That is, a<<=2;

 implies a=a<<2;

a^=3; implies a=a^3; and so on.

 Relational Operators
The relational operators determine the relationship between two operands. Specifically, they determine equality and

ordering among operands. Following table lists the relational operators supported by Java.

Operator Meaning

== Equal to (or comparison)

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. Any type in Java, including integers, floating-point numbers,
characters, and Booleans can be compared using the equality test, ==, and the inequality test,

!=. Only numeric types can be compared using the ordering operators. That is, only integer, floating- point, and

character operands may be compared to see which is greater or less than the other. For example, the following code

fragment is perfectly valid:

int a = 4; int b

= 1;

boolean c = a < b;
In this case, the result of a<b (which is false) is stored in c.

Note that in C/C++ we can have following type of statement –

int flag;
…….
if(flag)

//do something
In C/C++, true is any non-zero number and false is zero. But in Java, true and false are Boolean values and nothing

to do with zero or non-zero. Hence, the above set of statements will cause an error in Java. We should write –
int flag;
………..

if(flag==1)

//do some thing

 Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All of the binary logical operators

combine two boolean values to form a resultant boolean value.

Operator Meaning

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

Object Oriented programming with Java– BCS306A 7

& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

The truth table is given below for few operations:

A B A|B A&B A^B !A

False False False False False True

False True True False True True

True False True False True False

True True True True False False

Program 2.3 Demonstration of Boolean Logical operators

class BoolLogic

{
public static void main(String args[])

{
boolean a = true; boolean

b = false; boolean c = a | b;

boolean d = a & b; boolean

e = a ^ b;
boolean f = (!a & b) | (a & !b); boolean g = !a;

System.out.println(" a = " + a); System.out.println(" b = "

+ b); System.out.println(" a|b = " + c);

System.out.println(" a&b = " + d); System.out.println("
a^b = " + e); System.out.println("!a&b|a&!b = " + f);

System.out.println(" !a = " + g);

boolean h = b & (a=!a);

System.out.println("b & (a=!a) =" +h);

System.out.println("New a is "+a);
}

}

The output would be –

a = true b

= false a|b
= true

a&b = false

Object Oriented programming with Java– BCS306A 8

a^b = true

!a&b|a&!b = true
!a = false
b & (a=!a) =false
New a is false

Note: In C/C++, the logical AND/OR operations never evaluates the second operand if the value of first operand

itself can judge the result. That is, if the first operand is false, then second operand is not evaluated in AND

operation and result will be false. Similarly, if the first operand is true in OR operation, without evaluating the

second operand, it results true. But in Java, Boolean logical operators will not act so. Even if the first operand is
decisive, the second operand is evaluated. This can be observed in the above program while evaluating h= b& (a=

!a). Here, b is false and hence ANDed with anything results false. But, still the second operand (a= !a) is evaluated

resulting a as false.

If we don’t want the second operand to be evaluated, we can use short-circuit logical operators.

Short-Circuit Logical Operators
The short-circuit AND (&&) and OR (||) operators will not evaluate the second operand if the first is decisive. For

example,

int x=0, n=5;

……..
if(x!=0 && n/x > 0)

//do something

Here, the first operand x!= 0 is false. If we use logical AND (&) then the second operand n/x>0 will be evaluated

and we will get DivisionByZero Exception. So, to avoid this problem we use && operator which will never

evaluated second operand if the first operand results into false.

It is standard practice to use the short-circuit forms of AND and OR in cases involving Boolean logic, leaving the

single-character versions exclusively for bitwise operations. However, there are exceptions to this rule. For

example, consider the following statement:

if(c==1 & e++ < 100) d =

100;

Here, using a single & ensures that the increment operation will be applied to e whether c is equal to 1 or not.

 The Assignment Operator
The assignment operator is the single equal sign, =. It has this general form:

var = expression;
Here, the type of var must be compatible with the type of expression. It allows you to create a chain of assignments.

For example, consider this fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works because the = is an operator

that yields the value of the right-hand expression. Thus, the value of z = 100 is 100, which is then assigned to y,

which in turn is assigned to x. Using a “chain of assignment” is an easy way to set a group of variables to a

common value.

Object Oriented programming with Java– BCS306A 9

 The ?: Operator
Java supports ternary operator which sometimes can be used as an alternative for if-then-else statement. The general

form is –

var = expression1 ? expression2 : expression3;

Here, expression1 is evaluated first and it must return Boolean type. If it results true, then value of

expression2 is assigned to var, otherwise value of expression3 is assigned to var. For example,

int a, b, c ;

……….
c= (a>b)?a:b; //c will be assigned with biggest among a and b

Operator Precedence
Following table describes the precedence of operators. Though parenthesis, square brackets etc. are separators, they

do behave like operators in expressions. Operators at same precedence level will be evaluated from left to right,

whichever comes first.

Highest

Lowest

 Using Parentheses
Parentheses always make the expression within them to execute first. This is necessary sometimes. For example,

a= b – c * d;
Here, c and d are multiplied first and then the result is subtracted from b. If we want subtraction first, we should use

parenthesis like

a= (b-c)*d;

Sometimes, parenthesis is useful for clarifying the meaning of an expression and for making readers to understand
the code. For example,

a | 4 + c >> b & 7 can be written as (a | (((4 + c) >> b) & 7))

In such situations, though parenthesis seems to be redundant, it existence will not reduce the performance of
the program.

(), [], .

++, --, ~, !
*, /, %

+, -

>>, >>>, <<

>, >=, <, <=

==, !=

&

^

|

&&

||

?:

=, op=

Object Oriented programming with Java– BCS306A 10

 Control Statements
A programming language uses control statements to cause the flow of execution to advance and branch based on

changes to the state of a program. Java’s program control statements can be put into the following categories:
selection, iteration, and jump. Selection statements allow your program to choose different paths of execution

based upon the outcome of an expression or the state of a variable. Iteration statements enable program execution to

repeat one or more statements (that is, iteration statements form loops). Jump statements allow your program to
execute in a nonlinear fashion. All of Java’s control statements are examined here.

 Java’s Selection Statements

Java supports two selection statements: if and switch. These statements allow you to control the flow of your

program’s execution based upon conditions known only during run time.

if Statement
The general form is –

if (condition)

{

}

else

{

}

//true block

//false block

If the condition is true, then the statements written within true block will be executed, otherwise false block will

be executed. The condition should result into Boolean type. For example,

int a, b, max;

…………
if(a>b)

max=a;
else

max=b;

Nested-if Statement
A nested if is an if statement that is the target of another if or else. For example,

if(i == 10)

{
if(j < 20)

a = b;
if(k > 100)

c = d;

}

else

else

a = c;

a = d;

Object Oriented programming with Java– BCS306A 11

The if-else-if Statement
The general form is –

if(condition1)

block1;

else if(condition2) block2;

…………..
………

….. else

blockn

The if statements are executed from the top down. As soon as one of the conditions controlling the if is true, the

block associated with that if is executed, and the rest of the ladder is bypassed. The final else acts as a default

condition; that is, if all other conditional tests fail, then the last else statement is performed.

switch Statement
The switch statement is Java’s multi-way branch statement. It provides an easy way to dispatch execution to

different parts of your code based on the value of an expression. As such, it often provides a better alternative than a

large series of if-else-if statements. Here is the general form of a switch statement:

switch (expression)

{
case value1:

// statement sequence break;
case value2:

// statement sequence break;

………….... case

valueN:

// statement sequence break;
default:

// default statement sequence

}

The expression must be of type byte, short, int, or char; each of the values specified in the case statements must be

of a type compatible with the expression. The switch statement works like this: The value of the expression is

compared with each of the literal values in the case statements. If a match is found, the code sequence following

that case statement is executed. If none of the constants matches the value of the expression, then the default

statement is executed. However, the default statement is optional. If no case matches and no default is present, then

no further action is taken. The break statement is used inside the switch to terminate a statement sequence. When a

break statement is encountered, execution branches to the first line of code that follows the entire switch

statement. This has the effect of “jumping out” of the switch. The break statement is optional. If you omit the

break, execution will continue on into the next case.

Object Oriented programming with Java– BCS306A 12

NOTE:

 We can even nest switch statements one within the other.

 The switch differs from the if in that switch can only test for equality, whereas if can evaluate any type
of Boolean expression. That is, the switch looks only for a match between the value of the expression and
one of its case constants.

 No two case constants in the same switch can have identical values. Of course, a switch

statement and an enclosing outer switch can have case constants in common.

 A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler works. When it compiles

a switch statement, the Java compiler will inspect each of the case constants and create a “jump table” that it will

use for selecting the path of execution depending on the value of the expression. Therefore, if you need to select
among a large group of values, a switch statement will run much faster than the equivalent logic coded using a

sequence of if-elses. The compiler can do this because it knows that the case constants are all the same type and

simply must be compared for equality with the switch expression. The compiler has no such knowledge of a long

list of if expressions.

 Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what we commonly call loops. A
loop repeatedly executes the same set of instructions until a termination condition is met.

while Loop
The general form is –

while(condition)

{
//body of the loop

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the conditional

expression is true. When condition becomes false, control passes to the next line of code immediately following the

loop.

do- while Loop
The general form is –

do

{
//body of the loop

} while(condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates the conditional expression.
If this expression is true, the loop will repeat. Otherwise, the loop terminates. As with all of Java’s loops, condition

must be a Boolean expression.

for Loop
The general form is –

for(initialization; condition; updation)

{
// body of loop

}

Object Oriented programming with Java– BCS306A 13

When the loop first starts, the initialization portion of the loop is executed. Generally, this is an expression that sets

the value of the loop control variable, which acts as a counter that controls the loop. It is important to understand

that the initialization expression is only executed once. Next, condition is evaluated. This must be a Boolean

expression. It usually tests the loop control variable against a target value. If this expression is true, then the body of

the loop is executed. If it is false, the loop terminates. Next, the updation portion of the loop is executed. This is
usually an expression that increments or decrements the loop control variable. The loop then iterates, first evaluating

the conditional expression, then executing the body of the loop, and then executing the iteration expression with

each pass. This process repeats until the controlling expression is false.

for-each Loop
The for-each style of for is also referred to as the enhanced for loop. The general form of the for-each version of

the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will receive the elements

from a collection, one at a time, from beginning to end. The collection being cycled through is specified by
collection. There are various types of collections that can be used with the for, but the only type used in this chapter

is the array. With each iteration of the loop, the next element in the collection is retrieved and stored in itr-var. The

loop repeats until all elements in the collection have been obtained.

Because the iteration variable receives values from the collection, type must be the same as (or compatible with) the

elements stored in the collection. Thus, when iterating over arrays, type must be compatible with the base type of

the array.

Consider an example –

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;
for(int i=0; i < 10; i++) sum +=

nums[i];

The above set of statements can be optimized as follows –

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

int sum = 0;
for(int x: nums)

sum += x;

With each pass through the loop, x is automatically given a value equal to the next element in nums. Thus, on the

first iteration, x contains 1; on the second iteration, x contains 2; and so on. Not only is the syntax streamlined, but it

also prevents boundary errors.

For multi-dimensional arrays:

The for-each version also works for multi-dimensional arrays. Since a 2-d array is an array of 1-d array, the iteration

variable must be a reference to 1-d array. In general, when using the for-each for to iterate over an array of N

dimensions, the objects obtained will be arrays of N–1 dimensions.

Consider the following example –

Object Oriented programming with Java– BCS306A 14

Program 2.4 Demonstration of for-each version of for loop

class ForEach

{
public static void main(String args[])

{
int sum = 0;

int nums[][] = new int[2][3];

// give nums some values for(int i = 0;
i < 2; i++)

for(int j=0; j < 3; j++) nums[i][j] =

(i+1)*(j+1);

for(int x[] : nums) //nums is a 2-d array and x is 1-d array

{
for(int y : x) // y refers elements in 1-d array x

{
System.out.println("Value is: " +y); sum += y;

}

}
System.out.println("Summation: " + sum);

}

}
The output would be –

Value is: 1

Value is: 2

Value is: 3
Value is: 2
Value is: 4

Value is: 6

Summation: 18

The for-each version of for has several applications viz. Finding average of numbers, finding minimum and

maximum of a set, checking for duplicate entry in an array, searching for an element in unsorted list etc. The

following program illustrates the sequential (linear) search.

Program 2.5 Linear/Sequential Search

class SeqSearch

{
public static void main(String args[])

{
int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };

int val = 5;

boolean found = false;

for(int x : nums)

{
if(x == val)

{

Object Oriented programming with Java– BCS306A 15

found = true; break;

}

}
if(found)

System.out.println("Value found!");
}

}

The output would be –

Value found !

 Jump Statements
Java supports three jump statements: break, continue, and return. These statements transfer control to another part of

your program.

Using break
In java, break can be used in 3 different situations:

 To terminate statement sequence in switch

 To exit from a loop

 Can be used as a civilized version of goto

Following is an example showing terminating a loop using break.

for (int i=0;i<20;i++) if(i==5)

break;
else

System.out.println(“ i= “ + i);

The above code snippet prints values from 0 to 4 and when i become 5, the loop is terminated.

Using break as a form of goto

Java does not have a goto statement because it is an un-conditional jump and may end up with an infinite loop.

But in some situations, goto will be useful. For example, the goto can be useful when you are exiting from a
deeply nested set of loops. To handle such situations, Java defines an expanded form of the break statement. By

using this form of break, you can, for example, break out of one or more blocks of code. These blocks need not be

part of a loop or a switch. They can be any block. Further, you can specify precisely where execution will resume,

because this form of break works with a label. As you will see, break gives you the benefits of a goto without its
problems. The general form of labeled break is:

break label;

Program 2.6 Illustration of break statement with labels

class Break

{
public static void main(String args[])
{

boolean t = true;

first:

{

Object Oriented programming with Java– BCS306A 16

second:

{
third:

{
System.out.println("Before the break."); if(t)

break second; // break out of second block

System.out.println("This won't execute");

}
System.out.println("This won't execute");

}
System.out.println("This is after second block.");

}

}

}

The output would be –

Before the break

This is after second block

As we can see in the above program, the usage of break with a label takes the control out of the second block directly.

Using continue
Sometimes, we may need to proceed towards next iteration in the loop by leaving some statements. In such
situations, we can use continue statement within for, while and do-while. For example –

for (int i=1; i<20;i++) if (i%2 ==

0)

continue;
else

System.out.println(“i = “ + i);

The above code snippet prints only the odd numbers in the range of 1 to 20.

Using return
The return statement is used to explicitly return the method. Based on some condition, we may need to go back to

the calling method sometimes. So, we can use return in such situations.

QUESTION BANK:

1. Explain key attributes of Java programming language.
2. Briefly explain JRE and JDK.
3. Explain three OOPs principles.
4. What are Keywords and Identifiers? List the rules to write an identifier.
5. Discuss various data types used in Java.
6. What is type Conversion and Casting? Explain automatic type promotion in expressions with rules

and a demo program.
7. Explain scope and lifetime of variables with suitable examples.
8. "Java is a strongly typed language" - Justify this statement.
9. Write a note on

a. Java class libraries

Object Oriented programming with Java– BCS306A 17

Literals

10. Explain array declaration and initialization in Java with suitable examples.
11. What are multi-dimensional arrays? Explain with examples.
12. What are different types of operators in Java? Explain any two of them.

13. Discuss ternary operator with examples.
14. Differentiate >> and >>> with suitable examples.
15. Briefly explain short-circuit logical operators with examples.
16. Explain different types of iteration statements with examples.

17. Discuss various selective control structures.
18. Write a note on jump statements in Java.

19. Discuss different versions of for - loop with examples.

20. Write a program to illustrate break statement with labels.

	Department of Computer Science & Engineering
	MODULE 1
	An Overview of Java
	Object-Oriented Programming
	Two Paradigms
	Abstraction
	A First Simple Program
	Program 1.1 Illustration of First Java Program
	javac Prg1.java
	java Prg1
	A Second Short Program
	type var_name;
	Program 1.2 Illustrating usage of variables
	Two Control Statements
	Program 1.3 Illustration of if statement
	Program 1.4 Illustration of for statement
	Using Blocks of Code
	Lexical Issues
	The Java Class Libraries
	Java is a Strongly Typed Language
	The Primitive Types
	Integers
	Program 1.5: Program to illustrate need for long data type
	Floating –Point Types
	Program 1.6 Finding area of a cirlce
	The output would be –
	Characters
	Program 1.7 Demonstration of char data type
	ch1++; //increment in ASCII (even Unicode) value
	--ch2; //decrement in ASCII (even Unicode) value
	The output would be – (1)
	Booleans
	Program 1.8 Demonstration of Boolean data type
	The output would be – (2)
	A Closer Look at Literals
	Integer Literals
	Floating-Point Literals
	Boolean Literals
	Character Literals
	String Literals
	Variables
	Declaring a Variable
	type identifier [= value][, identifier [= value] ...] ;
	Dynamic Initialization
	The Scope and Lifetime of Variables
	Program 1.9 Demonstration of scope of variables
	The output would be – (3)
	Java’s Automatic Conversions
	Casting Incompatible Types
	(target-type) value
	Program 1.10 Illustration of type conversion
	The output would be – (4)
	Automatic Type promotion in Expression
	Type Promotion Rules
	Program 1.11 Demonstration of type promotions
	The output would be – (5)
	Arrays
	One Dimensional Arrays
	type arr_name[];
	type arr_name[]=new type[size];
	Multidimensional Arrays
	Program 1.12 Demonstration of 2-d array
	The output would be – (6)
	Program 1.13 Demonstration of irregular arrays
	The output would be – (7)
	Alternative Array Declaration Syntax

	Operators
	Arithmetic Operators
	Bitwise Operators
	Bitwise Logical Operators
	Bitwise NOT
	Bitwise AND
	Bitwise OR
	Bitwise XOR
	Left Shift
	Right Shift
	Unsigned Right Shift
	Bitwise Operator Compound Assignment

	Relational Operators
	Boolean Logical Operators
	Short-Circuit Logical Operators

	The Assignment Operator
	The ?: Operator
	Operator Precedence
	Using Parentheses
	Control Statements
	Java’s Selection Statements
	if Statement
	Nested-if Statement
	The if-else-if Statement
	switch Statement
	Iteration Statements
	while Loop
	do- while Loop
	for Loop
	for-each Loop
	Jump Statements
	Using break
	Using continue
	Using return
	QUESTION BANK:

