e College of Engineering

Department of Computer Science and
Engineering

DATA STRUCTURE AND APPLICATIONS
BCS304

_—
DATA STRUCTURES

—_— —_— —_— I —_—

Department of Computer Science & Engineering, ATMECE, Mysuru

MODULE 1: INTRODUCTION TO DATASTRUCTURES

DATASTRUCTURE
A data structure is a class of data that can be characterized by its

organization and the operations that are defined on it.

Data Structure = Organized Data +Allowed Operations
In other words, the organized collection of data is called data
structure. A Data structure is a set of values along with the set of
operations permitted on them. It is also required to specify the
semantics of operations permitted on the data values, and this Is
done by using set of axioms, which describes how these operations
work.

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M L o

e] College of Engineering

» Aset of data values
»Aset of functions specifying the operations permitted on the

data values

» Aset of axioms describing how these operations work.

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E
atnie) College of Engineering

""" Classification of Data Structure

There are various ways to classify data structure :
 Primitive and Non-Primitive Data Structure

e Linear and Non-Linear Data Structure

« Homogenous and Non-Homogeneous Data Structure

- Static and Dynamic Data Structure

Department of Computer Science & Engineering, ATMECE, Mysuru

o] College of Engineering

Primitive and Non-Primitive Data Structure

The data structure that are atomic (indivisible) are called

primitive. Example are integer, real, Boolean and characters.

The data structure that are not atomic are called non-primitive

or composite. Example are records, array and string.

Department of Computer Science & Engineering, ATMECE, Mysuru

1 |,

N] . e uf p
AT M FE ¥ &
‘/ R“. :‘ ‘.A \'/ E k = _ . z E i
— :' :
UK S
RSt e
FSA) Snaf 20 is

2L} College of Engineering

Introduction
That means, algorithm is a set of instruction

written to carry out certain tasks & the data
structure is the way of organizing the data with

their logical relationshipretained.

To develop a program of an algorithm, we should

select an appropriate data structure for that algorithm.

Therefore algorithm and its associated data structures

from a program.

Department of Computer Science & Engineering, ATMECE, Mysuru

mJA T M E

aliie] College of Engineering

RLGASTILAR S . ’ -

Classification of Data Structurew

Data structure

Primifive DS Non-Prir}ﬂtive DS

Integer|| Float | |Character| | Pointer
aat

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E

aliie] College of Engineering

RLGASTILAR S . ’ -

Classification of Data Structur@

Non-Primitive DS

Linear List

Array

Non-Linear List

Queue

G;aph Trees

Link List| [Stack

Department of Computer Science & Engineering, ATMECE, Mysuru

m|LA T M E o — | *

2L0c] College of Engineering

Primitive Data Structure

There are basic structures and directly operated
upon by the machineinstructions.

In general, there are different representationon
different computers.

Integer, Floating-point number, Character constants,
string constants, pointers etc, fall in this category.

Department of Computer Science & Engineering, ATMECE, Mysuru

| E LR

2 0c) College of Engineering

Non-Primitive Data Structure

There are more sophisticated data
structures.

These are derived from the primitive data structures.

The non-primitive data structures emphasize on
structuring of a group of homogeneous (same type)or
heterogeneous (different type) data items.

Department of Computer Science & Engineering, ATMECE, Mysuru

" e] College of Engineering

Non Primitive Data Structure

The most commonly used operation on data
structure are broadly categorized into
following types:

> Create

o Selection
- Updating
o Searching
o Sorting

> Merging

> Destroy or Delete

Department of Computer Science & Engineering, ATMECE, Mysuru

LA T M E o — | =

2Lc) College of Engineering

ifferent between them

A primitive data structure is generally a basic
structure that is usually built into the language, such
as an integer, a float.

A non-primitive data structure is built out of primitive
data structures linked together in meaningful ways,
such as a or a linked-list, binary search tree,AVL Tree,
graph etc.

Department of Computer Science & Engineering, ATMECE, Mysuru

A r | ™ -
A P WM B
/ X R. :l‘ "‘A “)\'/ ‘: ;- \J _

. ., COllch of Enginccring RLGISTARS : r 3 %1 10"\‘

Linear and Non- Linear Data Struetere -
In a linear data structure, the data items are arranged in

a linear sequence. Example is array.

In a non-Linear data structure, the data items are not in a

sequence. Example is tree.
Homogeneous and Non- Homogenous Data Structure

In Homogeneous Structure, all the elements are of same type.

Example is arrays.

In Non-homogeneous structure, the elements may or may not

be of same type. Example is records.

Department of Computer Science & Engineering, ATMECE, Mysuru

a 1 M 5

2L0c] College of Engineering

b
Static and Dynamic Data Structure
Static structures are ones whose sizes and structures, associated memory

location are fixed at compile time.

Dynamic structures are ones which expand or shrink as required during the

program execution and there associated memory location change.

Department of Computer Science & Engineering, ATMECE, Mysuru

AL ML |

e] College of Engineering

Data Structure Operations

There are six basic operations that can be

performed on data structure:-

Traversing
Searching
Sorting
Inserting
Deleting
Merging

Department of Computer Science & Engineering, ATMECE, Mysuru

A1 ME

2Lnie] College of Engineering

(a) Traversing
Traversing means accessing and processing each element in the data structure exactly once.

This operation is used for counting the number of elements, printing the contents of the

elements etc.

b) Searching

Searching is finding out the location of a given element from a set of numbers.

c) Sorting

Sorting is the process of arranging a list of elements in a sequential order.

The sequential order may be descending order or an ascending order according to the
requirements of the data structure.

(d) Inserting

Inserting an element is adding an element in the data structure at any position. After insert

operation the number of elements are increased by one.

Department of Computer Science & Engineering, ATMECE, Mysuru

LIA T M E o

al

e} College of Engineering

e) Deleting
Deleting an element is removing an element in the data structure at any position. After

deletion operation the number of elements are decreased by one.

(f) Merging
The process of combining the elements of two data structures into a single data structure

Is called merging.

Department of Computer Science & Engineering, ATMECE, Mysuru

DAASTRUCTURES AND APPLICATIONS

Arrays and Its Operation

)|

T M E

should be of the same type. Most of the data structures make use of arrays
to implement their algorithms. Following are the important terms to

understand the concept of Array.

- Element — Each item stored in an array is called an element.

« Index — Each location of an element in an array has a numerical index,
which is used to identify the element.

- Array Representation

« Arrays can be declared in various ways in different languages. For

Illustration, let's take C array declaration.

Department of Computer Science & Engineering, ATMECE, Mysuru

m|iLjA T M E

mead College of Engineering

« Arrays can be declared in various ways in different languages. For
Ilustration, let's take C array declaration.

« Arrays can be declared in various ways in different languages. For
Illustration, let's take C array declaration.

« As per the above illustration, following are the important points to be
considered.

« Index starts with 0.
« Array length is 10 which means it can store 10 elements.

- Each element can be accessed via its index. For example, we can fetch an
element at index 6 as 9.

int array [10] = { 35, 33, 42, 10, 14, 19, 27, 44, 26, 31 }

elements 35 (/33|42 ||10 || 14 || 19 || 27 || 44 || 26 || 31

index 0 1 2 3 4 65§ 6 7 8 9

Size ;10

Department of Computer Science & Engineering, ATMECE, Mysuru

ARRAYS

Imagine that we have 100 scores. We need to read them,
process them and print them. We must also keep these 100
scores In memory for the duration of the program. We can
define a hundred variables, each with a different name.

scorel

score2

score100

Department of Computer Science & Engineering, ATMECE, Mysuru

v T" ANA | I\
{ ‘.,, /i »n
A ALY A A J

But having 100 different names creates other problems. We
need 100 references to read them, 100 references to
process them and 100 references to write them.

- ? l l

l Read scorel ' l Process scorel ' | Write scorel '

| Read scorel100 ' l Process score100 ' Write scorel100

Department of Computer Science & Engineering, ATMECE, Mysuru

An array is a sequenced collection of elements, normally of
the same data type, although some programming languages
accept arrays in which elements are of different types. We
can refer to the elements in the array as the first element,
the second element and so forth, until we get to the last
element.

scores [1]

scores [2]

An array

scores [100]

SCOIcCs

Arrays with indexes

Department of Computer Science & Engineering, ATMECE, Mysuru

T A 1
i ')I'//.:: " .

e College of Engineering

We can use loops to read and write the elements in an array.
We can also use loops to process elements. Now it does not
matter If there are 100, 1000 or 10,000 elements to be
processed—Iloops make it easy to handle them all. We can
use an Integer variable to control the loop and remain in the
loop as long as the value of this variable is less than the total
number of elements in the array

We have used indexes that start from 1;
some modern languages such as C,

C++ and Java start indexes from O.

Department of Computer Science & Engineering, ATMECE, Mysuru

A 1 M 5

) College of Engineering

Read scores [1]

Process scores [1]

[i >100]

Write scores [1]
[1>100]

Stop

Processing an array
Department of Computer Science & Engineering, ATMECE, Mysuru

2L} College of Engineering

Multi-dimensional arrays

The arrays discussed so far are known as one-dimensional
arrays because the data is organized linearly in only one
direction. Many applications require that data be stored in
more than one dimension. Figure shows a table, which is
commonly called a two-dimensional array.

Second dimension

(columns) scores[2][3]
! l
(11 21 [3]1 [4]
[m
S 2] o
First dimension
(rows) (3]
(4]
[5]
scores

Atwo-dimensional array

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E
2Liie] College of Engineering A
The indexes In a one-dimensional array dlrectly define the
relative positions of the element in actual memory. Figure
shows a two-dimensional array and how it is stored iIn

memory using row-major or column-major storage. Row-
major storage Is more common.

“A,’ bbA”
. Column 1 —
B S E

oW L
C (1] [2] [3] [4] s “B”
e » 119 » 13 9" 13 % () urn‘l] LT
“p” [1] A B C D F

E [2] uE” “F” “G” “Hn “C,,

g Tk Column 3 2

j & Row 2 User’s View 6 € 3

G . “DV’

Column 4
H ‘5H19
Row-major Column-major
storage storage

Memory layout of arrays

Department of Computer Science & Engineering, ATMECE, Mysuru

LJA T M E

, ‘“ =1 College of Engineering

Data Structures and Applications
Niodule 1

Structures , Unions and

Pointers
structure Unions
struct Emp union Emp
{ {
char X; //size1byte char X;
floatY; //size 4 byte floaty ;
re; ie;

Memory Sharing

v

ﬁ | | X | [Y | I X&Y | I
5 bytes € (structure variable) C € (union variablE}K
4 bytes allocates storage

equal to largest one
Department of Computer Science & Engineering, ATMECE, Mysuru

type cast: tells the compHertg FE ge” an
. object’s type (for type checking purposes —

G e n e r] C does not modify the object in any way)

PO] n te rS /Dangerous! Sometimes necessary...

void *p;
int i;
char C/

putchar (* (char *)p);

- void *: a “pointer to anything”

- Lose all information about what type of thing is pointed
to

- Reduces effectiveness of compiler’ s type-checking
- Can’ t use pointer arithmetic

Department of Computer Science & Engineering, ATMECE, Mysuru

; tn" College of Engineering

Pass-by-Reference

void
set x and y(int *x, int *y)

1001;
1002 ; a

int a 1; Yy
int b 2;

set x and y(&a, &b);

Department of Computer Science & Engineering, ATMECE, Mysuru

ELEREY
2t College of Engineering oy [
Arrays and Pointers pusging arays:

-Array name ~ a to the initial (oth) array
element Really int *array

Must explicitly
pass the size
/

int
ali] = *(a + 1) foo (int ar‘:':ay[], /
unsigned int size)
-An array is passed to a function as a t
. . array[size - 1] ..
pointer
= The array size is lost! }
int
-Usually bad style to interchange arrays main (void)
and pointers {
= Avoid pointer arithmetic! int a[10], b[5];
. foo(a, 10).. foo(b, 5) ..
}

Department of Computer Science & Engineering, ATMECE, Mysuru

LIAT M E

atiie] College of Engineering

"""" Arrays and Pointers

int
foo(int array]|],

unsigned int size)

{
What does this print? 8
printf (“$d\n”, sizeof (array)) */////’ P
} ... because array is really
a pointer
int

main (void)

{
int a[l10], b[5];
: f°°(a' 10) .. f°_° (b, 3) . What does this print? 40
printf (“sd\n”, sizeof(a));, —|
}

Department of Computer Science & Engineering, ATMECE, Mysuru

Arrays and Pointers

int i; int *p;

int array[10]; int array[10];

for (1 = 0; i < 10; i++) { | for {
arrayl[i] = ..; -

} . }

These two blocks of code are functionally equivalent

Department of Computer Science & Engineering, ATMECE, Mysuru

Strings

- In C, strings are just an array of characters
= Terminated with “\o’ character
= Arrays for bounded-length strings
= Pointer for constant strings (or unknown length)

char strl[15]
char *str2

“Hello, world'\n”;
“Hello, world!\n”;

C terminator; '\0’

Department of Computer Science & Engineering, ATMECE, Mysuru

2 0c) College of Engineering

String length
« Must calculate length:

int Can pass an

— array or pointer
strlen (
{

Check for
terminator

\ What s the size

of the array???

I
o

array access int len

to pointer! \\
while 1= \0’)
len++;

return (len) ;

}
- Provided by standard C library: #inciude <string.n>

Department of Computer Science & Engineering, ATMECE, Mysuru

8 1M Y

2 o] College of Engineering
Pointer to Pointer (char **argv)

Passing arguments to main:

int .
main (in char
{ —

_____ size of the argv array/xector

——__ an array/xector of

char *

Recall when passing an
array, a pointer to the

] first element is passed
Suppose you run the program this way

UNIX% ./program hello 1 2 3

arge == 5 (five strings on the
command line)

Department of Computer Science & Engineering, ATMECE, Mysuru

!l] A T M E p, |
s College of Engineering

char **argv

"3” .
Ox1020 “2” ___ These are strings!!
0x1018 Not integers!
0x1010 > 17
0X1008 — llhello”
0x1000

“./program”

Department of Computer Science & Engineering, ATMECE, Mysuru

aliie] College of Engineering

A 1 M E

Siructures and Unions inde T
Objectives

- Be able to use compound data structures in
programs

- Be able to pass compound data structures as
function arguments, either by value or by
reference

- Be able to do simple bit-vector manipulations

Department of Computer Science & Engineering, ATMECE, Mysuru

Structures

-Compound data:

<A dateis
= an int month and

- anint dayand

= anint year

struct ADate {
int month;
int day;
int year;

};

struct ADate date;

date.month = 1;

date.day = 18;
date.year = 2018;

-Unlike Java, C doesn’t automatically
define functions for initializing and
printing ...

Department of Computer Science & Engineering, ATMECE, Mysuru

i
(.

%rc 10

;"-’ College of Engineering
Structure Representation & Size

esizeof (struct ..) =

. sum of sizeof (field) struct CharCharInt {
o alignment padding cha cl;
+ Processor-and compiler-specific r c2;
cha i;
r
int
} foo;
foo.cl = "a’;
foo.c2 = 'b’;
foo.i = OxDEADBEEF;
| el | e2 | padding | i |

x86 uses “little-endian” representation

Department of Computer Science & Engineering, ATMECE, Mysuru

Typedef

» Mechanism for creating new type names
> New names are an alias for some other type
= May improve clarity and/or portability of the

program

Overload existing type

typedef long int64 t; «
typedef struct ADate {
int month;
int day;
int year;

} Date; <

int64_t i = 100000000000 ;
Date d = { 1, 18, 2018 };

names for clarity and
portability

Simplify complex type names

Department of Computer Science & Engineering, ATMECE, Mysuru

 Allow consistent use of the same constant
throughout the program
= Improves clarity of the program
= Reduces likelihood of simple errors

= Easier to update constants in the program

Constant names are
Preprocessor directive capitalized by convention

AN
#define s:iﬁ 10
Define pnce,

int array[10]; int array[SIZE]s+— use throughout
' / the program
for (i=0; i<10; i++) { for (i=0; i<SIZE; i++) {

Department of Computer Science & Engineering, ATMECE, Mysuru

Al M T

e) College of Engineering

Arrays of Structures

Array declaration Constant

\ — /

Date birthdays[NFRIENDS] ;

bool
check birthday(Date today)
{

int i; Array index, then

structure field

-
for (i = 0; i < NFRIENDS; i++) {
if ((today.month == birthdays[i] .month) &&
(today.day == birthdays[i] .day))

return (true);

return (false);

Department of Computer Science & Engineering, ATMECE, Mysuru

r]{ a

Pointers to Structures

Date
create datel (int month,
int day,

int year)

Date d;
onth = month;
ay = day;
ear = year;

return (d);

} N\

Pass-by-reference

void

create date2 (Date *d,
—’—’_’_,,———”int.month,
int day,

int year)

month;
day;

year;

Date today;

N\
Copies date

., today = cre

/

create_date

ate \datel (1, 18, 2018);
4
2(&today, 1, 18, 2018);

Department of Computer Science & Engineering, ATMECE, Mysuru

e College of Engineering

Pointers to Structures (cont.)

void
create date2 (Date *d,
int month, 0x30A8
int day, 0x30A4
int year)
(0x30A0
d->month = month;
0x3098
d->day = day;
d->year = year;
}
void 0x1008
fun with dates(void)
{ 0x1004
Date today;
Y 0x1000
create_date2 (&today, 1, 18, 2018);
}

Department of Computer Science & Engineering, ATMECE, Mysuru

o] College of Engineering

el

Pointers to Structures (cont.)

Date *

create date3 (int month,

int day,
int year)
{
Date *d; ___/
d->mdnth month;
d->day day;
d->ye T year;
refurn (d);
}

What is d pointing to?!?!
(more on this later)

Department of Computer Science & Engineering, ATMECE, Mysuru

r

A1 M L o —
2lie] College of Engineering .
Unions

- Up to programmer to determine how to interpret
a union (i.e. which member to access)

- Often used in conjunction with a “type” variable
that indicates how to interpret the union value

enum TYPE { INT, FLOAT, STRING };

struct VARIABLE {
enum TYPE type;

. T [type to determi
union VALUE value; CEESS .yp 0 CERETIITE
y how to interpret value

Department of Computer Science & Engineering, ATMECE, Mysuru

Unions

 Storage
= size of union is the size of its largest member

= avoid unions with widely varying member sizes;
for the larger data types, consider using pointers

instead
« Initialization

= Union may only be initialized to a value
appropriate for the type of its first member

Department of Computer Science & Engineering, ATMECE, Mysuru

Structures

- ™ Reminder... the C struct declaration creates a data type that groups
objects of possibly different types into a single object

 Implementation similar to arrays
)

= « All components are stored in a contiguous region of memory
- ‘Apointer to a structure is the address of its first byte
« The compiler maintains information about each structure type indicating the

byte'%ffset of each field

|| .

= « Generates references to structure elements using these offsets as
displacements in memory referencing instructions

Department of Computer Science & Engineering, ATMECE, Mysuru

A

2 0o] College of Engineering

Structure allocation

Concept

m Contiguously-allocated region of memory
m Refer to members within structure by names

= Members may be of different types

struct rec { Memory Layout

int 1;

int a([3]:

1

int *p; = P

}i 0 4 16 20
Accessing Structure Member
void Assembly
set i1(struct rec *r,
int wval) # %eax = val

1 # %edx = r

r-»1 = wval; movl %eax, (Yedx) # Mem[r] = wal
X

Department of Computer Science & Engineering, ATMECE, Mysuru

] College of Engineering

A 1 MO

Structure Access

Generating Ptr tfo Structure Member

struct rec {
int 1;
int al[3];
int *p;

}:

Generating Pointer to
Array Element

m Offset of each

structure member
determined at compile
time

|
i]a P
0 4]‘ 16

r + 4 + 4*idx

int =
find a
{etruct rec *r, int idx)

{

return &r->a[idx];

}

f %ecx idx
f %Hedx -
leal 0(,%ecx,.4), %eax

leal 4 (%eax,%edx) ,%eax # r+d*idxs+d

find_a:

pushl
f 4d*idx movl

movl

sall
addl
addl
popl
ret

%ebp

%esp, %ebp

12(%ebp), %eax //idx (2nd arg)

$2, %eax // mult by 4

8(%ebp), %eax [/ ptr to struct (1starg)

$4, %eax
%ebp

Department of Computer Science & Engineering, ATMECE, Mysuru

Structure referencing (cont)

C Code

struct reec {
int 1;
int a[3];
int *p;

}3

vold
set p(struct rec *rj

{

r->p =
Er-=a[r-=1];

i a P
0 4 16 o relpresentts
e elemen
L Ll of “@” that |
i =] want upn to
0 4 I 16 point to
Element i
%edx = r
movl (%edx),%ecx # r->1
laeal 0(,%ecx,4),%eax # 4% (r->1)

leal 4 (%edx,%eax),%eax # r+d+d*(r-»1)

mov]l %eax,l6 (%edx)

Update r->p

Department of Computer Science & Engineering, ATMECE, Mysuru

&
\

SSt:nyl(:t:LJI'EES; Ea|”|(j s ‘i:r
Unions

Structures (records)

= Arrays are collections of data of the same type. In C there is
an alternate way of grouping data that permit the data to
vary in type.
 This mechanism is called the struct, short for structure.

= Astructure is a collection of data items, where each item is
Identified as to its type and name.

struct

{ "= ny .
char name([10]: strcpy (person.name, " james") ;

int age; person.age = 10;
float salary; person.salary = 35000;
} person;

Department of Computer Science & Engineering, ATMECE, Mysuru

[JA T M E

Structures and Unions

= \We can also embed a structure within a structure.

typedef struct {
int month;
int day;
int year;
} date;

typedef struct human-—-being {
char name[10] ;
int age;
float salary;
date dob;
}
« Aperson born on Fepruary 11, 1994, would have have values for the date

struct set as

personl.dob.month = 2;
personl.dob.day = 11;
personl.dob.year = 1944;

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M L o

e] College of Engineering

“Structures and Unions

o Aunion declaration is similar to a structure.
> The fields of a union must share their memory space.

> Only one field of the union is “active” at any given time

« Example: Add fields for male and female.

typedef struct sex—-type {
enum tag—-field {female, male} sex;

union {
int children;
int beard ;
personl.sex_info.sex = male; } bou;
personl.sex_info.u.beard=FALSE; ., cqcf struct human_being |
and char name[10] ;
person2.sex_info.sex = female; HHE Sney
— . float salary;
person2.sex_info.u.children = 4; date dob:

sex—type sex—info;
} ;
human—being personl, person2;

Department of Computer Science & Engineering, ATMECE, Mysuru

‘ /C‘% ; T I.\\“V/z T;{L
2Lnie] College of Engineering

Structures and Unions

« Internal implementation of structures

> The fields of a structure in memory will be stored in the same
way using increasing address locations in the order specified in
the structure definition.

> Holes or padding may actually occur

« Within a structure to permit two consecutive components to be properly
aligned within memory

> The size of an object of a struct or union type is the amount of
storage necessary to represent the largest component, including
any padding that may be required.

Department of Computer Science & Engineering, ATMECE, Mysuru

‘ /C‘% ; T I.\\“V/z T;{L
2L} College of Engineering

Self Referential Structures

o typedef structlist%{ Fhree n_OdeS .
char data; item1.link=&item?2;
'}'St*"”k? item?2.link=&item3;
e malloc: obtain a node
o list item1, item2, item3; (memory) free: release
item1.data=°a’; '
item2.data=‘b’; memaor.yp | C

item3.data=°‘c’;
item1.link=1tem2.link=1tem3.link=NULL;

Department of Computer Science & Engineering, ATMECE, Mysuru

DATIASTRUCTURESAND
APPLICATIONS

Dynamic Memory Allocation

1T M E

Problem with Arrays

« Sometimes
= Amount of data cannot be predicted beforehand
= Number of data items keeps changing during program execution

- Example: Search for an element in an array of N elements

 One solution: find the maximum possible value of N and allocate an array
of N elements
= \Wasteful of memory space, as N may be much smaller in some executions
= Example: maximum value of N may be 10,000, but a particular run may

need to search only among 100 elements

« Using array of size 10,000 always wastes memory in most cases

Department of Computer Science & Engineering, ATMECE, Mysuru

LIA L M KB

2L0c] College of Engineering

Better Solution™

« Dynamic memory allocation

o

= Know how much memory is needed after the program is run
« Example: ask the user to enter from keyboard

= Dynamically allocate only the amount of memory needed

» C provides functions to dynamically allocate memory
= malloc, calloc, realloc

Department of Computer Science & Engineering, ATMECE, Mysuru

Memory Allocation Functions

malloc

= Allocates requested number of bytes and returns a
pointer to the first byte of the allocated space

calloc

= Allocates space for an array of elements, initializes them
to zero and then returns a pointer to the memory.

free

= Frees previously allocated space.

realloc

= Modifies the size of previously allocated space.

« We will only do malloc and free

Department of Computer Science & Engineering, ATMECE, Mysuru

Allocatlng a Block of I\/Iemory

« Ablock of memory can be allocated using the
function malloc

= Reserves a block of memory of specified size and
returns a pointer of type void

= The return pointer can be type-casted to any pointer
type
 General format:

type *p;
p = (type *) malloc (byte size);

Department of Computer Science & Engineering, ATMECE, Mysuru

Example
p = (int *) malloc(100 * sizeof(int));

= Amemory space equivalent to 100 times the size of
an int bytes is reserved

= The address of the first byte of the allocated
memory Is assigned to the pointer p of type int

Department of Computer Science & Engineering, ATMECE, Mysuru

Contd.

» cptr = (char *) malloc (20);

Allocates 20 bytes of space for the pointer cptr of type char

sptr = (struct stud *) malloc(10*sizeof(struct stud));

Allocates space for a structure array of 10 elements. sptr
points to a structure element of type struct stud

Always use sizeof operator to find number of bytes for a data type,
as It can vary from machine to machine

Department of Computer Science & Engineering, ATMECE, Mysuru

Points to Note

- malloc always allocates a block of contiguous bytes
= The allocation can fail if sufficient contiguous memory
space Is not available
= |f it fails, malloc returns NULL

If ((p = (int*) malloc(100 * sizeof(int))) == NULL)
{

printf (“\n Memory cannot be allocated”);
exit();

}

Department of Computer Science & Engineering, ATMECE, Mysuru

.. Collcgc of Engmccnng

Using the malloc’ dArray)

« Once the memory is allocated, it can be used with pointers, or
with array notation

« Example:

Int *p, n, I,
scanf(“%d”, &n);
p = (int *) malloc (n * sizeof(int));
for (1=0; i1<n; ++1)
scanf(“%d”, &p[i]);

The n integers allocated can be accessed as *p, *(p+1), *(p+2),...,
*(p+n-1) or just as p[O], p[1], p[2], ...,p[n-1]

Department of Computer Science & Engineering, ATMECE, Mysuru

A re U —
A | \/| F
J 4 1V 1

Y A A

) College of Engineering

Example

int main()

{
int i,N;
float *height;
float sum=0,avg;

printf ("Input no. of students\n");

scanf ("%$d", &N);

height = (float *)
malloc (N * sizeof(float)) ;

printf ("Input heights for %d
students \n",N) ;

i<N; i++)
&height[i]) ;

for (i=0;
scanf ("%f",

for (i=0;i<N;i++)
sum += height[i];

avg = sum / (float) N;

printf ("Average height = %f \n",

avg) ;
free (height) ;

return O;

Department of Computer Science & Engineering, ATMECE, Mysuru

A r ¥ s 5 e uf p
A ' N E T} \ 4 &
a \\ / -4 5 &
‘/ %“. I " “) L . _ e ; f i
— =
& !
UKAS L
eetoiuns v
ESO a0)8 g

atnie] College of Engineering

" Releasing the Allocated
Space: free

 An allocated block can be returned to the system for

future use by using the free function
» General syntax:

free (ptr);
where ptr is a pointer to a memory block which has
been previously created using malloc
 Note that no size needs to be mentioned for the
allocated block, the system remembers it for each

pointer returned

Department of Computer Science & Engineering, ATMECE, Mysuru

alrays?

« malloc can be used to allocate memory for single
variables also
= p = (int *) malloc (sizeof(int));
= Allocates space for a single int, which can be accessed

as*p

» Single variable allocations are just special case of
array allocations
= Array with only one element

Department of Computer Science & Engineering, ATMECE, Mysuru

A T mall el

At _] College of Engineering
uctures

typedef struct{
char name[20];
int roll;
float SGPA[8], CGPA;
} person;
void main()
{

person *student;
int i,j,n;
scanf(""%d", &n);
student = (person *)malloc(n*sizeof(person));
for (i=05i<n;i++){
scanf("%s", student[i].name);
scanf(""%d", &student|[i].roll);
for(j=0;)<8;j++) scanf("%f", &student[i].SGPA[j]);
scanf("%f", &student[i].CGPA);

Department of Computer Science & Engineering, ATMECE, Mysuru

#define N 20
#define M 10
int main()

{

char word|[N], *
inti, n;
scanf("%d",&n);
for (i=0;i<n; ++1) {

M];

scanf("%s", word);
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));
strepy (wli], word) ;

¥

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return o;

Department of Computer Science & Engineering, ATMECE, Mysuru

#define N 20
#define M 10

4
int main() Tendulkar
{ Sourav
char word[N], *w]M]; Khan
inti, n; India

scanf("%d",&n);
for (i=0;i<n; ++i) {
scanf("%s", word);

w|[0] = Tendulkar
w][1] = Sourav
w[2] = Khan

wli] = (char *) malloc ((strlen(word)+1)*size0f(ch:W[3] = India

strepy (w[i], word) ;

¥

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return o;

Department of Computer Science & Engineering, ATMECE, Mysuru

w N - O

-

SY'Bt /W‘*’ S
ccof!rt ! 74

like

W

incerin

Department of Computer Science & Engineering, ATMECE, Mysuru

A malloc()
| T|le|n|d|ju|l |k]a \O
| S|o|ju|rjafv|\0
| K| h|{a|n|\0
»l Il {n|{d|i|al\0

TJA T M E p—
?‘ﬁth‘F'“°°E6 Pointers

- Pointers are also variables (storing addresses),
so they have a memory location, so they also
have an address

- Pointer to pointer — stores the address of a
pointer variable

int x = 10, *p, **q;

p = &X;

q = &p;

printf(“%d %d %d”, x, *p, *(*q));

will print 10 10 10 (since *q = p)

Department of Computer Science & Engineering, ATMECE, Mysuru

int **p;
= (int **) malloc(3 * sizeof(int *));

P |int**)—»

p[1]

pl2]Int” —»

p[O]

int* —>

Int*

_’

Department of Computer Science & Engineering, ATMECE, Mysuru

1T M E

College of Engineering
array: | P

2D array :?;:
#include <stdlib.h> :\
?{nt main() \

int **array;
array = (int**) malloc(nrows * sizeof(int *));

for(i = 0; 1 < nrows; i++)

{

array[i] = (int*)malloc(ncolumns *
sizeof(int));

Department of Computer Science & Engineering, ATMECE, Mysuru

|20 M L —

of Engineering

Int main() & o g
{ 1 :
? >
X 3 >
*(x+1);
“*(x+1); x[1][0] *(x[31+7)
((x+1)+4)) e
1 x[1][4]

Department of Computer Science & Engineering, ATMECE, Mysuru

LIA T M E o——
=BNaMicAllocation of 2-d"AFR

- Recall that address of [i][j]-th element is found by first finding the

address of first element of i-th row, then adding j to it

- Now think of a 2-d array of dimension [M][N] as M 1-d arrays,
each with N elements, such that the starting address of the M
arrays are contiguous (so the starting address of k-th row can be

found by adding 1 to the starting address of (k-1)-th row)

- This is done by allocating an array p of M pointers, the pointer p[k]
to store the starting address of the k-th row

Department of Computer Science & Engineering, ATMECE, Mysuru

ont M =

—] College of Engineering 80

d.

- Now, allocate the M arrays, each of N elements, with p[k] holding

the pointer for the k-th row array

- Now p can be subscripted and used as a 2-d array

« Address of p[il[j] = *(p+1) + j (note that *(p+i) is a pointer itself, and

p is a pointer to a pointer)

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E

memiieAt

int **allocate (int h, int w)

{_ « void read_data (int **p, int h, int
Int **p; Allocate array w
inti, j; of pointers) {
! e inti, j;
p = (int **) malloc(h*sizeof (int *)); «for (i=0;i<h;i++)

for (i=0;i<h;i++)

f 1=0:1<wW:]
p[i] = (int *) malloc(w * sizeof (int)); or =05 j<w:j++)

« scanf ("%d"w&p[i][i]);

return(p); T -
} Allocate array of
integers for each *Elements accessed like
row 2-D array elements.

Department of Computer Science & Engineering, ATMECE, Mysuru

void print_data (int **p, int h, int w)
{
inti, J;
for (i=0;i<h;i++)
{
for (j=0;j<w;j++)
printf (*"%5d ", p[il[j]D;
printf (""\n");

}

Int main()

{
Int **p;
int M, N;
printf (""Give M and N \n"");
scanf ("'%d%d", &M, &N);
p = allocate (M, N);
read_data(p, M, N);
printf (""\nThe array read as \n"");
print_data (p, M, N);
return O;

Department of Computer Science & Engineering, ATMECE, Mysuru

v0|d print_data (int **p, int h, int w)

{
inti, j;
for (i=0;i<h;i++)
{
for (j=0;j<w;j++)

Int main()
{
Int **p;
iInt M, N;
printf (""Give M and N \n"');
scanf ("'%d%d"", &M, &N);

pltintf (""%5d ", p[ill]); p = allocate (M, N);
printf (*'\n""); Give M and N read data (p, M, N);
} } i’ 23 printf ("\nThe array read as \n"");
rer print_data (p, M, N);
return O;

789
The array read }
as

Departn

& Engineering, ATMECE, Mysuru

A1l ME

2L} College of Engineering

emory Layout in Dynamic Allocatlon

* intmain()
« {

o Int**p;

e INntM,N:;

« printf ("Give M and N
\n""); scanf ("'%d%d"", &M,
&N); p = allocate (M, N);

o for (i=0;i<M;i++) {

« for(J=0;J<N;j++)

e printf (""%10d", &p[il[i]);

printf(“\n”);
*)

* returnO;

mt**aftocate UHI ﬂ, It W)

L
INt **p;
Inti,J;
= (Int **)malloc(h*sizeof (int

* -
b}

for (i=0; i<h; i++)
printf(“%10d”, &pli]);

rintf ‘\n\n”
or(i=

o[l (lnt
*)malloc(w*sizeof(int));

return(p);
}

Department of Computer Science & Engineering, ATMECE, Mysuru

O U t p U t Starting address of each

row, contiguous
33 // (pointers are 8 bytes

31535120 31535128 31535136 long)

31535152 31535156 31535160

31535184 31535188 31535192 |. f(l)svn;ilétsineach
31535216 31535220 31535224 contiguous

Department of Computer Science & Engineering, ATMECE, Mysuru

g AT M
GPaSSmgg pom!ers Eo o=

function

Int main() void foo(int *a)
{ {

Int x=5;
................. It m;

%
.............. 5 1400 m: a)
foo(&x); m=m-+1;
X
}
1400
&x=1400

Department of Computer Science & Engineering, ATMECE, Mysuru

Int main()

swap(int a, int b)

{ {
int x=10, y=5;
swap(x,y); int temp;
temp=a;
} a=Db;
b=temp;
¥
10 5
< y 10 5
a b

Department of Computer Science & Engineering, ATMECE, Mysuru

Ca
Cal

Reference

‘I{nt main() swap(int *a, int *b)
int x=10, y=5; {
swap(&x,&y); int temp;
temp==*a;
, *a="*h;
*b=temp;
)
1400 | 10 5 1500 *b
X \
. 1400 N 1500

Department of Computer Science & Engineering, ATMECE, Mysuru

DAIASTRUCTURES AND APPLICATIONS

Arrays- Representation of Linear
Arrays in Memory

eryi

gc 0 Engmccnng

W

e An array

= a single name for a collection of data values
- all of the same data type
= subscript notation to identify one of the values
A carryover from earlier programming languages
- More than a primitive type, less than an object
like objects when used as method parameters and return types
do not have or use inheritance

- Accessing each of the values in an array
> Usuallya for loop

Department of Computer Science & Engineering, ATMECE, Mysuru

m_|Creatin

Arrays

 General syntax for declaring an array:

Base Type[] Array Name = new Base Type[Length];

- Examples:
80-element array with base type char:
char[] symbol = new char[80];

100-element array of doubles:
double[] reading = new double[100];

70-element array of Species:
Species|[] specimen = new Species[/70];

Department of Computer Science & Engineering, ATMECE, Mysuru

[AT hree Vinyeshasiiatains

-] College of Engineering

with an Arksy RGKRES)

1. Declaring an array: int[] pressure
° creates a name of type "int array”

: types int and int [] are different
. int [] : type of the array

e int :type of the individual values

1. To create a new array, e.g. pressure = new int[100];

2. Torefer to a specific element in the array
- also called an indexed variable, e.g.

pressure[3] = keyboard.nextInt();
System.out.println ("You entered" + pressurel[3]);

Department of Computer Science & Engineering, ATMECE, Mysuru

aliie] College of Engineering

ay Lengt

- Specified by the number in brackets when created with
new

» maximum number of elements the array can hold
o storage is allocated whether or not the elements are
assigned values

- the attribute length,
Species|[] entry = new Species[20];
System.out.println (entry.length);

» The 1ength attribute is established in the declaration
and cannot be changed unless the array is redeclared

Department of Computer Science & Engineering, ATMECE, Mysuru

aliie] College of Engineering

m| A T M E —
“Subscript Range

- Array subscripts use zero-numbering
= the first element has subscript o
= the second element has subscript 1
= etc. - the nth element has subscript n-1
= the last element has subscript length-1

 For example: an int array with 4 elements

Subscript:| O 1 2 3
Value:| 97 | 86 | 92 | 71

Department of Computer Science & Engineering, ATMECE, Mysuru

"ubscrlpt out of Range Error

 Using a subscript larger than 1ength-1 causes a run

time (not a compiler) error
o an ArrayOutOfBoundsExceptionisthrown

‘you do not need to catch it
-you need to fix the problem and recompile your
code
» Other programming languages, e.g. C and C++, do

not even cause a run time error!

= one of the most dangerous characteristics of these
languages is that they allow out of bounds array
indices.

Department of Computer Science & Engineering, ATMECE, Mysuru

A Length Specified at RUN t1me

// array length specified at compile-time
int[] arrayl = new 1int[10];

// array length specified at run-time
// calculate size..

int size = ..;

int[] array2 = new 1nt[size];

Department of Computer Science & Engineering, ATMECE, Mysuru

" tme Collcgc ogngmccrmg ! ,._,,,,,

Use SmEUParArray Names

- Using singular rather than plural names for arrays
improves readability

 Although the array contains many elements the most
common use of the name will be with a subscript, which
references a single value.

- It is easier to read:
o score[3] than
s scores|[3]

Department of Computer Science & Engineering, ATMECE, Mysuru

= College of Engineering

nitializingeeleeeyse

- can be initialized by putting a comma-separated list in braces

 Uninitialized elements will be assigned some default value, e.g. o for
int arrays (explicit initialization is recommended)

- The length of an array is automatically determined when the values
are explicitly initialized in the declaration

- For example:
double[] reading = {5.1, 3.02, 9.65};

System.out.println(reading.length);

- displays 3, the length of the array reading

Department of Computer Science & Engineering, ATMECE, Mysuru

AL MK
tratizing zrray E[emen

a Loop

- A for loop is commonly used to initialize array elements

- For example:
int 1;//loop counter/array index

int[] a = new int[10];
for(i = 0; 1 < a.length; 1i++)
ali] = 0;
> note that the loop counter/array index goes from 0 to length - 1
o it counts through 1ength = 10 iterations/elements using the
zero-numbering of the array index

Programming Tip:
Do not count on default initial values for array elements
= explicitly initialize elements in the declaration or in a loop

Department of Computer Science & Engineering, ATMECE, Mysuru

ATy

An array of a class Cmeth@déerpt from the Sales Reportw;)rogram

be declared and the in the text uses the salesAssociate class

class's methods applied to create an array of sales associates:
to the elements of the y '

array.

pubiic void getFigures()

create an array of {

SalesAssocilates System.out.printin("Enter number of sales associates:");
numberOfAssociates = Savitchin.readLinelnt();

_ SalesAssociate[] record =

each array element is new SalesAssociate[numberOfAssociates];

a SalesAssociate for (inti = 0; i < numberOfAssociates; i++)

variable

record[i] = new SalesAssociate();

System.out.printin("Enter data for associate " + (i + 1));
use the readInput record[i].read Input();

method of System.out.printIn();
SalesAssoclate }

}

Department of Computer Science & Engineering, ATMECE, Mysuru

| Arrays uee—
Elements as Method
Arguments

- Arrays and array elements can be

= used with classes and methods just like other
objects

= be an argument in a method
s returned by methods

Department of Computer Science & Engineering, ATMECE, Mysuru

. {
Va Ia b leS Scanner keyboard = new Scanner(System.in);a

System.out.println("Enter your score on exam 1:");
as Met h Od int firstScore = keyboard.nextInt();

Argu ments / int[] nextScore = new int[3];
int1;

nextScore is doul?le pogsibleAverage; .

Py for (i = 0; 1 < nextScore.length; i++)
an array Or 1nts nextScore[i] = 80 + 10%i;
for (i = 0; i < nextScore.length;i++)

{

— i ore[i]);
an element O_f System.out.println("If your score on exam 2 is "
nextScorels + nextScore[i]);
an argument of System.out.println("your average will be "

g :
method + possibleAverage);
average \ ;
average / ?ublic static double average(int n1, int n2)
L . Excerpt from ArgumentDemo
method definition } return (n1 + n2)/2.0; orogram in text.

Department of Computer Science & Engineering, ATMECE, Mysuru

public static void main(String[] arg)
{
SalesAssociate[] record = new SalesAssociate[numberOfAssociates];
Inti;
for (i = 0; 1 < numberOfAssociates; i++)
{
record[i] = new SalesAssociate();
System.out.printin("Enter data for associate " + (i + 1));
record[i].readInput();

¥
m(record[0]);

}

public static void m(SalesAssociate sa)

{
¥

Department of Computer Science & Engineering, ATMECE, Mysuru

e College of Engineering

Change an Indexed

. Vadiable Argument?

= only a copy of the value is passed as an argument
» method cannot change the value of the indexed
variable

- class types are reference types (“call by reference”)
= pass the address of the object

s the corresponding parameter in the method
definition becomes an alias of the object

> the method has access to the actual object

> so the method can change the value of the indexed
variable if it is a class (and not a primitive) type

Department of Computer Science & Engineering, ATMECE, Mysuru

WA T M E e —

4 College of Engineering

Array Elements

int[] grade = new 1nt[10];

obj.method (grade[i]) ; // grade[i] cannot be changed

method (int grade) // pass by value; a copy

Person[] roster = new Person[1l0];

obj.method (roster[i]); // roster[i] can be changed

method (Person p) // pass by reference; an alias

Department of Computer Science & Engineering, ATMECE, Mysuru

2l College of E I\imccnng

ray Names as Method Argd’ments

 Use just the array name and no brackets

- Pass by reference

> the method has access to the original array and can change
the value of the elements

- The length of the array passed can be different for
each call
= when you define the method you do not need to
know the length of the array that will be passed
o use the length attribute inside the method to
avold ArrayIndexOutOfBoundsExceptions

Department of Computer Science & Engineering, ATMECE, Mysuru

in a Method Call

the method's argument
Is the name of an array

of characters

public static void showArray(char([]”/a)
{

int 1i;

for(i = 0; 1 < a.length; i++)

System.out.printlnfaiiiii\\\\\\
}

uses the 1length attribute
to control the loop

char[] grades = new char[45]; : :
allows different size arrays

and avoids index-out-of-
bounds exceptions

MyClass.showArray (grades) ;

Department of Computer Science & Engineering, ATMECE, Mysuru

~ Arguments Tor
malin

- The heading for the main method shows a parameter that is an
array of Strings:

public static voild main (String[] arg)

e Metho

- When you run a program from the command line, all words
after the class name will be passed to the main method in the
arg array.
jJava TestProgram Josephine Student

 The following main method in the class TestProgramwill
print out the first two arguments it receives:

Public static void main(String[] arqg)
{
System.out.println (“Hello “ + arg[0] + ™ “ + arg[l]):
}
+ In this exampie, the output from the command line above wiil

be:
Hello Josephine Student

Department of Computer Science & Engineering, ATMECE, Mysuru

| Remember They Are Reference Types

int[] a = new 1int[3];
int[] b = new int[3];
for (int i < a.length; 4 This does not create a
- copy of array a;
al1] _
b o= 4 It makes b another name

for array a.

System.out.println(al[2]
al2] = 10;

System.out.println(al[2] + " " + b[2]);

Avalue changed in a
IS the same value

obtained with b

Department of Computer Science & Engineering, ATMECE, Mysuru

= D]A T M E
g CO G S{PYgerize WITN array names:

remember they are reference types

int i; aalndbareboth ‘.
int[] ~ new int[3]: 3-element arrays of ints

[] a
int[] b = new 1Int[3];
for (1=0; i < a.length; i++)/ all elements of a and b are

. assigned the value 0
ali] 0; //>
for(1=0; 1 < b.length; 1i++) _

b[i] = 0 tests if the
b oo ’ addresses of a
1t {b == a) | and b are equal,

System.out.println("a equals b"); not if the array
else

, values are equal
System.out.println("a does not equé¥

The output for this code will be " a does not equal b"
because the addresses of the arrays are not equal.

Department of Computer Science & Engineering, ATMECE, Mysuru

T M E i
¢ of Engjneering s ’%QSOE’: .
e‘ﬁavmr of Three Operation
Primitive | Class Entire Array
Type Type Array Element
Assignment | Copy content | Copy Copy Depends on
(=) address address primitive/
class type
Equality Compare Compare Compare Depends on
(==) content address address primitive/
class type
Parameter Pass by Pass by Pass by Depends on
Passing value reference reference primitive/
(content) (address) (address) class type

Department of Computer Science & Engineering, ATMECE, Mysuru

public static boolean

Arrays for | int

Equal]ty boolean match = false;

1f (a.length == b.length)
{

tch =t ; //tentativel
« To test two arrays it i g, e

fOI' equality you while (match && (i < a.length))

: {
need to define an if (a[i] != b[i])
equals method match = false;

1++;

that returns true if } }
and only the arrays return match;
have the same }
length and all
corresponding

values are equal

Department of Computer Science & Engineering, ATMECE, Mysuru

Return
an Array

- the address of
the array is
passed

 The local array
name within
the method is
just another
name for the
original array

char[] c;
c = vowels();

for(int 1 =

0; 1 < c.length; i++)

System.out.println(c[i]);

}

public static char[] vowels()

{

char[] newArra

newArray[0]
newArray[1]
newArray|[2]
newArray|[3]

newArray[4]

new char[5];

return newArray;

c, newArray, and

the return type of
vowels are

all the same type:
char []

Department of Comp

A T M E
= Wiappe

 Arrays can be maAiEiB ayc& by creating a wrapper class

= similar to wrapper classes for primitive types

- In the wrapper class:
- make an array an attribute
o define constructors

s define accessor methods to read and write element values and
parameters

- The text shows an example of creating a wrapper class for an array of
objects of type OneWayNoRepeatsList

= the wrapper class defines two constructors plus the following
methods:

addItem, full, empty,entryAt,atLastEntry,onList,
maximumNumberOfEntries, numberOfEntries,and eraselist

Department of Computer Science & Engineering, ATMECE, Mysuru

Z : s
bq .

AJA

~E \T\I'

Partidlly i — >
~ Arrays

- Sometimes only part of an array has been filled with data

- Array elements always contain something

> elements which have not been written to
« contain unknown (garbage) data so you should avoid reading

them
» There is no automatic mechanism to detect how many elements

have been filled
= you, the programmer need to keep track!

- An example: the instance variable countOfEntries (in the
class OneWayNoRepeatsList)is incremented every time

addItemis called (see the text)

Department of Computer Science & Engineering, ATMECE, Mysuru

% CSE* =

2 010 College of Engl eering CAS %m»

ample of a Partially FilleGArray

entry[0] Buy milk.

entry[1] Call home.

entry[2] CORRCOlNCLLIlelBN , countOfEntries - 1
entry[3]

entry[4] :> garbage values

countOfEntries has avalue of 3.

entry.length hasavalue of 5.

Department of Computer Science & Engineering, ATMECE, Mysuru

DATASTRUCTURES AND APPLICATIONS

Arrays- Operations
Deleting, Searching and Sorting

Arra

« There are manytechniques for searching an array for a particular
value

- Sequential search:

o start at the beginning of the array and proceed in sequence until
either the value is found or the end of the array is reached*

« if the array is only partially filled, the search stops when the
last meaningful value has been checked
o it is not the most efficient way
= but it works and is easy to program

* Or, just as easy, start at the end and work backwards toward the
beginning

Department of Computer Science & Engineering, ATMECE, Mysuru

A1l M E
{ampleindedq

public boolean onList (String item)

{

boolean found = false;

int 1 = 0;

while ((! found) &&
The onList method of { (1 < countOfntries))
OneWayNoRepeatslLis t if (item.equals(entry[i]))
sequentially searches th g found = true;
array entry to see it the else
parameter itemis in the \ L
array

return found;

Department of Computer Science & Engineering, ATMECE, Mysuru

otUurAiR

ollege of Engineering

 Access methods that return references to array instance
variables cause problems for information hiding.
Example: class ..

{
private String[] entry;

public String[] getEntryArray ()
{

return entry;

}

Even though entries is declared private, a method outside the
class can get full access to it by using getEntryArray.

- In most cases this type of method is not necessary anyhow.
- Ifit is necessary, make the method return a copy of the array
instead of returning a reference to the actual array.

Department of Computer Science & Engineering, ATMECE, Mysuru

AS ortin

_] College of Engineeri

Arra

Sorting a list of'elements is another very common problem
(along with searching a list)

= sort numbers in ascending order
> sort numbers in descending order
» sort strings in alphabetic order

o etc.

- There are many ways to sort a list, just as there are many ways
to search a list

- Selection sort
= one of the easiest
= not the most efficient, but easy to understand and program

Department of Computer Science & Engineering, ATMECE, Mysuru

m - Select imtm—

] College of Engineering

Algorithm for an
Array of Integers

To sort an array on integers in ascending order:
1. Find the smallest number and record its index
2. swap (interchange) the smallest number with the
first element of the array
= the sorted part of the array is now the first
element

= the unsorted part of the array is the remaining
elements

3. repeat Steps 2 and 3 until all elements have been
placed

= each iteration increases the length of the sorted
part by one

Department of Computer Science & Engineering, ATMECE, Mysuru

Example

Problem: sort this 10-element array of integers in ascending order:

al0] a[l] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

7 6 11 17 3 15 5 19 30 14

1st iteration: smallest value is 3, its index is 4, swap a[0] with a[4]

: |
!

before:

after: | 3 6 n | 17 7 | 15 | 5 |

2nd iteration: smallest value in remaining listis 5, its index is 6, swap a[1] with a[6]

v |

3 6 | n | 17 | 7 | 15 | 5 |
| 3

3 5 11 17 7 15 6 19 30

14

How many iterations are needed?

Department of Computer Science & Engineering, ATMECE, Mysuru

aliue] College of Engineering

xample: Selection Sort

- Notice the precondition: every array element has a value
- may have duplicate values

« broken down into smaller tasks

= "find the index of the smallest value"
= "Interchange two elements”
s private because they are helper methods (users are

not expected to call them directly)

Department of Computer Science & Engineering, ATMECE, Mysuru

Selection Sort Code

AJA -‘vclrr I ||
OQ’CTO\'

H College of Engineering

-7'?!&***m T

*Precondition:

*Every indexed variable of the array a has a value.
*Action: Sorts the array a so that

*al0] <= af[l] <= ... <= ala.length - 1].

**/

public static void sort(int[] a)
{
int index, indexOfNextSmallest;
for (index = 0; index < a.length - 1; index++)
{//Place the correct value in a[index]:
indexOfNextSmallest = indexOfSmallest (index, a);
interchange (index, indexOfNextSmallest, a);
//al[0] <= a[l] <=...<= al[index] and these are
//the smallest of the original array elements.
//The remaining positions contain the rest of
//the original array elements.

Department of Computer Science & Engineering, ATMECE, Mysuru

College of Engineering

nsertion Sort

- Basic Idea:
= Keeping expanding the sorted portion by one
= Insert the next element into the right position in the sorted
portion
« Algorithm:
1. Start with one element [is it sorted?] — sorted portion
2. While the sorted portion is not the entire array

1.

2.
3.

Find the right position in the sorted portion for the next
element

Insert the element

If necessary, move the other elements down

Expand the sorted portion by one

Department of Computer Science & Engineering, ATMECE, Mysuru

Insertion Sort: An example = -

o Firstiteration

= Before: [51], 3, 4,9, 2
o After: [3,5],4,9,2
« Second iteration
= Before: [3, 5], 4,9, 2
= After: [3,4,5],9,2
« Third iteration
= Before: [3, 4, 51,9, 2
= After: [3,4,5,9],2
« Fourth iteration
= Before: [39 4,5, 9]9 2
o After: [2,3,4,5,9]

Department of Computer Science & Engineering, ATMECE, Mysuru

||| A T M | o—
: t“'-’ College of Engineering
subble Sort

- Basic Idea:
» Expand the sorted portion one by one

= “Sink” the largest element to the bottom after comparing adjacent
elements

> The smaller items “bubble” up
 Algorithm:
= ‘While the unsorted portion has more than one element
« Compare adjacent elements
« Swap elements if out of order

 Largest element at the bottom, reduce the unsorted portion by
one

Department of Computer Science & Engineering, ATMECE, Mysuru

;nm College of Engineering

subble Sort: An example

First Iteration:

= [5,3],4,9,22> [3,5],4,9,2

= 3,[5,41,9,22> 3,[4,5],9,2

° 3,4,15,9,22> 3,4,[5,9],2

= 3,4,5,19,2] 2 3,4,5,[2,9]

Second Iteration:

= [3,4],5,2,9 2 [3,4],5,2,9
= 3,14,51,2,9 2 3,(4,5],2,9
- 3) 4) [5) 2]) 9 9 37 47 [2) 5]) 9
Third Iteration:

° [3,4],2,5,9 2 [3,4],2,5,9
° 3,14,2],5,9 2 3,[2,4],5,9
Fourth Iteration:

= [3,2],4,5,9 2 [2,3],4,5,9

Department of Computer Science & Engineering, ATMECE, Mysuru

WA T M E e —

o] College of Engineering

ltidimensional Arrays

 Arrays with more than one index
= number of dimensions = number of indexes

- Arrays with more than two dimensions are a simple extension of
two-dimensional (2-D) arrays

« A 2-D array corresponds to a table or grid
= one dimension is the row
= the other dimension is the column
= cell: an intersection of a row and column
= an array element corresponds to a cell in the table

Department of Computer Science & Engineering, ATMECE, Mysuru

Arrayv

The table assumes a starting balance of $1000
First dimension: row identifier - Year

Second dimension: column identifier - percentage
Cell contains balance for the year (row) and percentage (column)
Balance for year 4, rate 7.00% = $1311

Balances for Various Interest Rates
Compounded Annually
(Rounded to Whole Dollar Amounts)

Year

a b~ wWwNPEF

5.00% 5.50% 6.00% 6.50% 7.00%

7.50%

$1050 $1055 $1060 $1065 $1070
$1103 $1113 $1124 $1134 $1145
$1158 $1174 $1191 $1208 $1225
$1216 $1239 $1262 $1286

$1276 $1307 $1338 $1370 $1403

$1075
$1156
$1242
$1335
$1436

Department of Computer Science & Engineering, ATMECE, Mysuru

Row Index 3
(4th row)

Array

Column Index 4
(5th column)

Indexes

0
1
2

,/3

4

0

1

2

3

$1050
$1103
$1158
$1216
$1276

$1055
$1113
$1174
$1239
$1307

$1060
$1124
$1191
$1262
$1338

$1065
$1134
$1208
$1286
$1370

$1070
$1145
$1225

$1403

Generalizing to two indexes: [row][column]
First dimension: row index

Second dimension: column index
Cell contains balance for the year/row and percentage/column
All indexes use zero-numbering

= Balance[3][4] = cell in 4th row (year = 4) and 5th column (7.50%)
= Balance[3][4] = $1311 (shown in yellow)

Department of Computer Science & Engineering, ATMECE, Mysuru

B AT Cc)ucﬁ—g\)ﬁécmng_ ,
for Loopkli®%ted 2-Deep

» To process all elements of an n-D array nest n for loops

= each loop has its own counter that corresponds to an index
- For example: calculate and enter balances in the interest table

= inner loop repeats 6 times (six rates) for every outer loop
iteration

» the outer loop repeats 10 times (10 different values of years)
= 50 the inner repeats 10 x 6 = 60 times = # cellsin table

int[][] table = new 1nt[10][06]; Excerpt from
int row, column; main method of
for (row = 0; row < 10; row++) ~nterestlable

for (column = 0; column < 6; column++)

table[row] [column] = balance (1000.00,
row + 1, (5 + 0.5*column)) ;

Department of Computer Science & Engineering, ATMECE, Mysuru

,\T\y,

G m

AT M “
vy tqaehfmeftmona[xrray
and Returned Values

Methods may have multi-D array parameters
Methods may return a multi-D array as the value returned

The situation is similar to 1-D arrays, but with more brackets
Example: a 2-D int array as a method argument

public static void showTable(int[][] displayArray)

{ / Notice how the number
Int row, column; of rows is obtained

for (row = 0; row<d|splayArraerngth row++)

{

System.out.print((row + 1) + " ");
for (column = 0; column < displayArray[row].Ier)E‘th; column++)

System.out.print("$" + displayArray[row][column] + " ");

System.out.printin(); :
1 Notice how the number showTable
of columns is obtained method from class
} InterestTable?

Department of Computer Science & Engineering, ATMECE, Mysuru

Ipleianta MU
I11C rﬁRglc o@gmlc?mng

ultidimensional Arrays

- Multidimensional arrays are implemented as arrays of
arrays.

Example:
int[][] table = new int[3][4];

o table is a one-dimensional array of length 3
» Each element in table is an array with base type int.

« Access a row by only using only one subscript:
o table[0].lengthgives the length (4) of the first row in the

array Note: table.length

otz (which is 3 in this
2 case) is not the
5 table [0] refers to the first | same thing as
row in the array, which is a table[0].length
one-dimensional array. (which is 4).

Department of Computer Science & Engineering, ATMECE, Mysuru

A 1 M 5

2) College of E gmccnng

gged Arrays

- Ragged arrays have rows of unequal length
= each row has a different number of columns, or entries

- Ragged arrays are allowed in Java

- Example: create a 2-D int array named b with 5 elements in the
first row, 7 in the second row, and 4 in the third row:
int[][] b = new 1nt[3]][];
b[0] = new 1int[5];
b[l] = new int|[7];
bl[2]

= new int[4];

Department of Computer Science & Engineering, ATMECE, Mysuru

Employee Time Records

» The class TimeBook uses several arrays to keep track of employee

time records:
public class TimeBook

{
private int numberOfEmployees; hours[i][]j] has

private int[][] hours: the hours for

private int[] weekHours; employee j on day i
private int[] dayHours;

weekHours[j] has

the week's hours for
employee j+1

dayHours [1] has the

total hours worked by all
employees on day i

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M R
A T ivli L

egtecd-gomsini
for (employeeNumber = 1;
employeeNumber <= numberOfEmployees; employeeNumber++)
{ // Process one employee
sum = 0;
for (dayNumber = 0; dayNumber < 5; dayNumber++)
sum = sum + hours[dayNumber] [employeeNumber - 1];

weekHours [employeeNumber — 1] = sum;
}
0 1 2
0/|8|0|9 « The method computeWeekHours uses
1809 nested for loops to compute the week's total
hours o(81818 hours for each employee.
aray 3[8842 Each time through the outer loop body, the
inner loop adds all the numbers in one
41888 column of the hours array to get the value
0 1 2 for one element in the weekHours array.
weekHours 20124138
array

Department of Computer Science & Engineering, ATMECE, Mysuru

Parallél ——

College of Engineering

publiAcFrsay se

{

private String __name;

private String[] studentName;

private int/[] __studentId;

private float/[] __studentGrade;

private String[] assignmentName; // parallel array?

public Course (String name, int numOfStudents)
{
_name = name;
_studentName = new String[numOfStudents];
_studentId = new int[numOfStudents];
_studentGrade = new float[numOfStudents];
for (int 1 = 0; 1 < numOfStudents; i++)

{

_studentName[1] = “none”;
_studentId[1i] = 0;
_studentGrade[1] = 0.0;

Department of Computer Science & Engineering, ATMECE, Mysuru

@

\T\y,

G m

LAAFray o —

s College of EngirfCering

LObjects

{

private String name;
private 1int _1d;

private float grade;

public Student () { name = “none”; 1id = 0;

_grade = .0; }
public Student (String name, int id, float grade)
{ name = name; 1id = 1d;

_grade = grade;}

public class Course
{

private String _name;
private Student[] student;

public Course(String name, int numOfStudents)

{

_name = name;
_student = new Student[numOfStudents];
for (int 1 = 0; 1 < numOfStudents; 1i++)
_student[i] = new Student(); // how to init
name, id,grade for each ob]

Department of Computer Science & Engineering, ATMECE, Mysuru

REFy .d

- Is it necessary to define an array as an ADT?

= C++ array requires the index set to be a set of
consecutive integers starting at o

= C++ does not check an array index to ensure that

it belongs to the range for which the array is
defined.

Department of Computer Science & Engineering, ATMECE, Mysuru

GeneralArray

class GeneralArray {

I/ objects: Aset of pairs < index, value> where for each value of index in IndexSet there

/Il is a value of type float. IndexSet is a finite ordered set of one or more dimensions,

/Il for example, {0, ..., n-1} for one dimension, {(0, 0), (0, 1), (0, 2),(1, 0), (1, 1), (1, 2), (2, 0),
/Il (2, 1), (2, 2)} for two dimensions, etc.

public:
GeneralArray(int j; RangelList list, float initValue = defatultValue);
I/l The constructor GeneralArray creates a j dimensional array of floats; the range of
/Il the kth dimension is given by the kth element of list. For each index i in the index
/Il set, insert <i, initValue> into the array.

float Retrieve(index i);
/l'if (i is in the index set of the array) return the float associated with |
// in the array; else signal an error

void Store(index i, float x);
/l'if (i is in the index set of the array) delete any pair of the form <i, y> present
// in the array and insert the new pair <i, x>; else signal an error.

}; Il end of GeneralArray

Department of Computer Science & Engineering, ATMECE, Mysuru

Representation 1

private:
int degree; I/ degree < MaxDegree
float coef [MaxDegree + 1];

Representation 2
private:
Int degree;
float *coef;

Polynomial::Polynomial(int d)
{

degree =d;

coef = new float [degree+1];

}

Department of Computer Science & Engineering, ATMECE, Mysuru

Representation 3
class Polynomial; //forward delcaration

class term {
friend Polynomial;
private:
float coef; I/ coefficient
Int exp; I/ exponent
I3
private:

static term termArray[MaxTerms];
static int free;
int Start, Finish;

term Polynomial:: termArray[MaxTerms];
Int Polynomial::free = 0; // location of next free location in
temArray

Department of Computer Science & Engineering, ATMECE, Mysuru

m| A T ML —
Lo) College of Engineerin st

o XS ffepresentation of two
Polynomials

Represent the following two polynomials:
A(X) = 2x1000 + 1
B(x) =x4+ 10x3+3x2+ 1

A.Start | A.Finish | B.Start B.Finish | free
coef 2 1 1 10 1
exp 1000 0 4 3 2 0
0 1 2 3 4 5 6

Department of Computer Science & Engineering, ATMECE, Mysuru

ML —

atme] College OfEngmcc

nomial Addition

Polynomial Polynomial:: Add(Polynomial B)
I/ return the sum of A(x) (in *this) and B(x)
{
Polynomial C; int a = Start; int b = B.Start; C.Start = free; float c;
while ((a <= Finish) && (b <= B.Finish))
switch (compare(termArray[a].exp, termArray[b].exp)) {
case ‘="
c = termArray[a].coef +termArray|[b].coef;
if (¢) NewTerm(c, termArray[a].exp);
a++: b++;
break;
case ‘<’
NewTerm(termArray[b].coef, termArray[b].exp);
b++:
case >’
NewTerm(termArray[a].coef, termArray[a].exp);
at+:

Department of Computer Science & Engineering, ATMECE, Mysuru

J College of Engineering
// end of switch and while
// add in remaining terms of A(x)
for (; a<= Finish; a++)
NewTerm(termArray[a].coef, termArray[a].exp);
/[add in remaining terms of B(x)
for (; b<= B.Finish; b++)
NewTerm(termArray[b].coef, termArray[b].exp);
C.Finish = free — 1;
return C;
} // end of Add

Department of Computer Science & Engineering, ATMECE, Mysuru

void Polynomial::NewTerm(float c, int e)
//Add a new term to C(x)

{

If (free >= MaxTerms) {

cerr << “Too many terms in polynomials”’<< endl;
exit();

}

termArray[free].coef = c;
termArray[freel.exp = e;
free++,;

} // end of NewTerm

Department of Computer Science & Engineering, ATMECE, Mysuru

A 1T M U o | =

L1e] College of Engineering

FSA) S0af 2018

Disadvantages of Representing Po .ym%ials
by Arrays

- What should we do when free is going to exceed
MaxTerms?

o Either quit or reused the space of unused polynomials.
But costly.

- If use a single array of terms for each polynomial,
it may alleviate the above issue but it penalizes
the performance of the program due to the need
of knowing the size of a polynomial beforehand.

Department of Computer Science & Engineering, ATMECE, Mysuru

2te) College of E

gineering

representations

- A_matrix is a two-dimensional data object made of m rows

and n columns, therefore having total m x n values. If most of
the elements of the matrix have o value, then it is called a

sparse matrix.

- Why to use Sparse Matrix instead of simple matrix ?
- Storage: There are lesser non-zero elements than zeros and

thus lesser memory can be used to store only those elements.

- Computing time: Computing time can be saved by logically

designing a data structure traversing only non-zero elements..

Department of Computer Science & Engineering, ATMECE, Mysuru

J College of Engineering
xample:

- Representing a sparse matrix by a 2D array leads to wastage of lots
of memory as zeroes in the matrix are of no use in most of the cases.

So, instead of storing zeroes with non-zero elements, we only store
non-zero elements. This means storing non-zero elements
with triples- (Row, Column, value).

- Sparse Matrix Representations can be done in many ways following
are two common representations:

- Array representation
- Linked list representation

Department of Computer Science & Engineering, ATMECE, Mysuru

étho H‘ °°""Usmg Arrays

2D array is used to represent a sparse matrix in which there are
three rows named as

Row: Index of row, where non-zero element is located
Column: Index of column, where non-zero element is located

Value: Value of the non zero element located at index —
(row,column)

00304

Row ojoj111)13]3

005 70
::} Column |2 2|23 |1]2

voooao Value 31415171126

02600

Department of Computer Science & Engineering, ATMECE, Mysuru

.'lHHL

o
o

0 0O

NODE

STRUCTURE

: Collcgc of Engineerin

etho gUsmg Linked Lists == "=

AJA ~\7
%,ck:o \6

In linked list, each node has four fields. These four fields are defined

as:

Row: Index of row, where non-zero element is located
Column: Index of column, where non-zero element is located

Value: Value of the non zero element located at index —
(row,column)

Next node: Address of the next node

w

0

START

N2

—=> [

o

w
~d

w
[y
N
w)
no
o

OWIl COLUMNI]I VALUE

Address of

next node

Department of Computer Science & Engineering, ATMECE, Mysuru

DATASTRUCTURES AND APPLICATIONS
STRINGS — Its Operations

Department of Computer Science & Engineering, ATMECE, Mysuru

"] College of Engineering

Strings

 Astring Is a sequence of characters treated as a group
W& have already used some string literals:
= “filename”
s “output string”
« Strings are important in many programming contexts:
> names
= other objects (numbers, identifiers, etc.)

Department of Computer Science & Engineering, ATMECE, Mysuru

Outline

» Strings
= Representation in C
= String Literals
= String Variables
= String Input/Output
printf, scanf, gets, fgets, puts, fputs
= String Functions

strlen, strcpy, strncpy, strcmp, strncmp, strcat, strncat,
strchr, strrchr, strstr, strspn, strcspn, strtok

= Reading from/Printing to Strings
sprintf, sscanf

Department of Computer Science & Engineering, ATMECE, Mysuru

A L M Y
o College of Engineering
Strings in C

® No explicit type, instead strings are maintained as arrays of
characters

® Representing strings in C
® stored in arrays of characters

® array can be of any length
® end of string is indicated by a delimiter, the zero character ‘\0’

"A String" A Sit|irji1|n|g|l\0

Department of Computer Science & Engineering, ATMECE, Mysuru

String Literals

« String literal values are represented by sequences of
characters between double quotes ()
» Examples
s ¢ - empty string
s “hello”
* “a” versus ‘a’
= ‘a’ls a single character value (stored in 1 byte) as the
ASCII value fora

= “@” IS an array with two characters, the first is a, the
second Is the character value \0

Department of Computer Science & Engineering, ATMECE, Mysuru

Referrlng to String therals

» String literal is an array, can refer to a single
character from the literal as a character

« Example:
printf(“%c”,”hello’[1]);
outputs the character ‘e’

 During compilation, C creates space for each string
literal (# of characters in the literal + 1)

= referring to the literal refers to that space (as if it is an
array)

Department of Computer Science & Engineering, ATMECE, Mysuru

] College of Engineering

Duplicate String thera

» Each string literal in a C program is stored at a
different location

« So even If the string literals contain the same string,
they are not equal (in the == sense)

« Example:
s char string1[6] = “hello”;
s char string2[6] = “hello”;
= put stringl does not equal string?2 (they are stored at

different locations)

Department of Computer Science & Engineering, ATMECE, Mysuru

oo College of Engineering

String Variables

» Allocate an array of a size large enough to hold the
string (plus 1 extra value for the delimiter)

« Examples (with initialization):

char str1[6] = “Hello”;

char str2[] = “Hello™;

char *str3 = “Hello”;

char str4[6] = {*H’,’e’,’’,’’,’0’,’\0’};

 Note, each variable is considered a constant in that
the space it Is connected to cannot be changed
strl = str2; /* not allowable, but we can copy the contents

of str2 to strl (more later) */

Department of Computer Science & Engineering, ATMECE, Mysuru

Changmg String Varlabl'm

 Cannot change space string variables connected to,
but can use pointer variables that can be changed

» Example:

C
C

C

nar *strl = “hello; /* strl unchangeable */
nar *str2 = “goodbye”; /* str2 unchangeable */

nar *str3; /* Not tied to space */

str3 = strl; /* str3 points to same space s1 connected to */
str3 = str2;

Department of Computer Science & Engineering, ATMECE, Mysuru

LIA T M E s

2lie) College of Engineering

""" Changing String Variables (C n‘t

 Can change parts of a string variable

char str1l[6] = “hello”;
str1]0] =

[* strl is now “yello” */
stri[4] = ‘\0’;

[* strl is now “yell” */

 Important to retain delimiter (replacing strl[5] in the
original string with something other than \0’ makes a

string that does not end)
« Have to stay within limits of array

Department of Computer Science & Engineering, ATMECE, Mysuru

 Use %s field specification in scanf to read string
= Ignores leading white space
= reads characters until next white space encountered
= C stores null (\O) char after last non-white space char
= Reads Into array (no & before name, array Is a pointer)

» Example:
char Name[11];
scanf(“%s”,Name);

» Problem: no limit on number of characters read (need
one for delimiter), If too many characters for array,
problems may occur

Department of Computer Science & Engineering, ATMECE, Mysuru

m|LA T M E o — | *

aliie] College of Engineering

String Input (cont) -

« Can use the width value in the field specification to
limit the number of characters read:
char Name[11];
scanf(“%10s”’,Name);
« Remember, you need one space for the \0
= width should be one less than size of array
« Strings shorter than the field specification are read

normally, but C always stops after reading 10
characters

Department of Computer Science & Engineering, ATMECE, Mysuru

.- 7’ College of Enginccri1§

» Edit set input %

tring Input (cont)

ListofChars]

= ListofChars specifies set of characters (called scan set)

o Characters reac

as long as character falls in scan set

= Stops when first non scan set character encountered
= Note, does not ignored leading white space
= Any character may be specified except]

= Putting ” at the

start to negate the set (any character

BUT list is allowed)

» Examples:

scanf(“%[-+0123456789]”,Number);
scanf(“%[™n]”,Line); /* read until newline char */

Department of Computer Science & Engineering, ATMECE, Mysuru

String Output

» Use %s field specification in printf:
characters in string printed until \O encountered
char Name[10] = “Rich”;
printf(“|%s|”,Name); /* outputs |Rich| */

« Can use width value to print string in space:
printf(““|%10s|”,Name); /* outputs | Rich| */

 Use - flag to left justify:
printf(““|%-10s|”,Name); /* outputs [Rich | */

Department of Computer Science & Engineering, ATMECE, Mysuru

Example

#include <stdio.h>

void main() {
char LastName[11];

char FirstName[11];

printf("Enter your name (last, first): ");
scanf("%10s%*[",],%10s",LastName,FirstName);

printf("Nice to meet you %s %s\n",
FirstName,LastName);

Department of Computer Science & Engineering, ATMECE, Mysuru

atnie) College of Engineering

Printing a String

Commands:

Int puts(char *str)
prints the string pointed to by str to the screen
prints until delimiter reached (string better have a \0)
returns EOF if the puts fails

outputs newline if \n encountered (for strings read with gets or fgets)

Int fputs(char *str, FILE *fp)
prints the string pointed to by str to the file connected to fp

fp must be an output connection
returns EOF if the fputs falils
outputs newline if \n encountered

Department of Computer Science & Engineering, ATMECE, Mysuru

Array of Strings

« Sometimes useful to have an array of string values

e Each

string could be of different length (producing a

ragged string array)
« Example:

char *MonthNames[13]; /* an array of 13 strings */
MonthNames[1] = “January’’; /* String with 8 chars */

Mont
Mont
etc.

nNames[2] = “February”; /* String with 9 chars */
nNames[3] = “March”; /* String with 6 chars */

Department of Computer Science & Engineering, ATMECE, Mysuru

A1 M L o —

21c] College of Engineering

Array of Strings Examp

#include <stdio.h>

void main() {
char *days[7];
char TheDay[10];
int day;

days[0] = "Sunday";
days[1] = "Monday";
days[2] = "Tuesday";
days[3] = "Wednesday";
days[4] = "Thursday";
days[5] = "Friday";
days[6] = "Saturday";

Department of Computer Science & Engineering, ATMECE, Mysuru

A1 M L o —

21c] College of Engineering

Array of Strings Examp

printf("Please enter a day: ");
scanf("%9s", TheDay);

day =0;
while ((day < 7) && (!samestring(TheDay,days[day])))
day++;

if (day <7)

printf("%s is day %d.\n", TheDay,day);
else

printf("No day %s"\n", TheDay);

}

Department of Computer Science & Engineering, ATMECE, Mysuru

Array of Strings Examp '

Int samestring(char *s1, char *s2) {
Inti;

/* Not same if not of same length */
If (strlen(sl) != strlen(s2))

return O;
/* look at each character in turn */

for (1=0; 1 <strlen(sl); i++)
[* 1f a character differs, string not same */
If (s1[i] '=s2[i]) return O;

return 1;

}

Department of Computer Science & Engineering, ATMECE, Mysuru

2o College of Engineering

String Functions

» C provides a wide range of string functions for
performing different string tasks
» Examples

strlen(str) - calculate string length
strcpy(dst,src) - copy string at src to dst

strcmp(strl,str2) - compare strl to str2

 Functions come from the utility library string.h
= #Include <string.h> to use

Department of Computer Science & Engineering, ATMECE, Mysuru

String Length

Syntax: Int strlen(char *str)
returns the length (integer) of the string argument
counts the number of characters until an \O encountered
does not count \O char

Example:
char strl = “hello”;

strlen(strl) would return 5

Department of Computer Science & Engineering, ATMECE, Mysuru

L

Copying a String

Syntax:
char *strcpy(char *dst, char *src)
copies the characters (including the \O) from the source string
(src) to the destination string (dst)
dst should have enough space to receive entire string (if not,
other data may get written over)
If the two strings overlap (e.g., copying a string onto itself) the
results are unpredictable
return value is the destination string (dst)
char *strncpy(char *dst, char *src, int n)

similar to strcpy, but the copy stops after n characters
If n non-null (not \0) characters are copied, then no \O is copied

Department of Computer Science & Engineering, ATMECE, Mysuru

2 0o] College of Enginee

String Comparison

Syntax:

Int strcmp(char *strl, char *str2)

compares strl to str2, returns a value based on the first

character they differ at:

less than O
if ASCII value of the character they differ at is smaller for strl
or if strl starts the same as str2 (and str2 is longer)

greater than O
iIfASCII value of the character they differ at is larger for strl
or if str2 starts the same as strl (and strl is longer)

0 if the two strings do not differ

Department of Computer Science & Engineering, ATMECE, Mysuru

Strmg Comparison (con

strcmp examples:
strcmp(“hello”,”hello”) -- returns O
stremp(“‘yello”,”hello’) -- returns value > 0

stremp(“Hello”,”hello’) -- returns value < 0
strcmp(“‘hello”,”hello there™) -- returns value < 0
stremp(“‘some diff”,’some dift”) -- returns value < 0

expression for determining if two strings s1,s2 hold the
same string value:
Istrcmp(s1,s2)

Department of Computer Science & Engineering, ATMECE, Mysuru

Strmg Comparison (Con

Sometimes we only want to compare first n chars:
Int strncmp(char *s1, char *s2, int n)

Works the same as strcmp except that it stops at the nth
character

looks at less than n characters if either string is shorter
than n
stremp(“‘some diff”,’some DIFF”) -- returns value > 0

strncmp(“‘some diff”,”’some DIFF”,4) -- returns O

Department of Computer Science & Engineering, ATMECE, Mysuru

A 1T M E _

e] College of Engineering

#include <stdio.h>
#include <string.h>

void main() {
char fnrame[81];

char prevline[101] ="
char buffer[101];

FILE *instream:;

printf("Check which file: ");
scanf(""%80s",fname);

if ((instream = fopen(fname,"r")) == NULL) {
printf("Unable to open file %s\n",fname);
exit(-1);

}

Department of Computer Science & Engineering, ATMECE, Mysuru

}

St rc IOV/ strcm o Exam 0 | ‘;::-.i'-".i

/* read a line of characters */

while (fgets(buffer,sizeof(buffer)-1,instream) 1= NULL) {
[* if current line same as previous */

If (!strcmp(buffer,prevline))
printf("Duplicate line: %s",buffer);
/[* otherwise if the first 10 characters of the current
and previous line are the same */
else if (!strncmp(buffer,prevline,10))
printf(”’Start the same:\n %s %s",prevline,buffer);
[* Copy the current line (in buffer) to the previous
line (in prevline) */
strcpy(prevline,buffer);
¥

fclose(instream);

Department of Computer Science & Engineering, ATMECE, Mysuru

LJA T M L |~ B4 () W

; € Collcg of Engineeri

tring Comparison (|gnor|ase‘)"°\

Syntax:

Int strcasecmp(char *strl, char *str2)

similar to strcmp except that upper and lower case
characters (e.g., ‘a’and ‘A’) are considered to be equal

Int strncasecmp(char *strl, char *str2, int n)
version of strncmp that ignores case

Department of Computer Science & Engineering, ATMECE, Mysuru

String Concatenation -

Syntax:
char *strcat(char *dstS, char *addS)

appends the string at addS to the string dstS (after dstS’s
delimiter)

returns the string dstS

can cause problems if the resulting string is too long to fit in dstS
char *strncat(char *dstS, char *addS, int n)

appends the first n characters of addS to dstS

If less than n characters in addS only the characters in addS
appended

always appends a \O character

Department of Computer Science & Engineering, ATMECE, Mysuru

ml_ JjATME

1Lie] College of Engineering

#include <stdio.h> strcat Examp le

#include <string.h>

void main() {
char fname[81];
char buffer[101];
char curraddress[201] = "";
FILE *instream;
int first=1,;

printf("Addressfile: ");
scanf("%80s",fname);

if ((instream = fopen(fname,"r")) == NULL) {
printf("Unable to open file %s\n",fname);
exit(-1);

b

Department of Computer Science & Engineering, ATMECE, Mysuru

m| A T M E s

2 1) College of Engineering

/*

strcat Example

Read a line */

while (fgets(buffer,sizeof(buffer)-1,instream) '= NULL) {

}

if (buffer[0] == ") { /* End of address */
printf(*%s\n",curraddress); /* Print address */
strcpy(curraddress,™"); /* Reset addressto «” */

first=1;
}

else {
/* Add comma (if not first entry in address) */

if (first) first = O; else strcat(curraddress,"”, ");
/* Add line (minus newline) to address */
strncat(curraddress,buffer,strlen(buffer)-1);

k
}

fclose(instream);

Department of Computer Science & Engineering, ATMECE, Mysuru

Syntax:
char *strchr(char *str, int ch)

returns a pointer (a char *) to the first occurrence of ch in
str
returns NULL if ch does not occur In str
can subtract original pointer from result pointer to
determine which character in array
char *strstr(char *str, char *searchstr)
similar to strchr, but looks for the first occurrence of the
string searchstr in str
char *strrchr(char *str, int ch)
similar to strchr except that the search starts from the end of
string str and works backward

Department of Computer Science & Engineering, ATMECE, Mysuru

A I ML |
=String Spans (Searching)

Syntax:

Int strspn(char *str, char *cset)
specify a set of characters as a string cset
strspn searches for the first character in str that is not part of
cset
returns the number of characters in set found before first
non-set character found
Int strcspn(char *str, char *cset)
similar to strspn except that it stops when a character that is
part of the set Is found
Examples:

strspn(“a vowel”,”bvcwl]”) returns 2
strcspn(“‘a vowel”,”(@,*e”) returns 5

Department of Computer Science & Engineering, ATMECE, Mysuru

tO a St”ng

The sprintf function allows us to print to a string
argument using printf formatting rules

First argument of sprintf is string to print to, remaining
arguments are as in printf

Example:
char buffer[100];
sprintf(buffer,”%s, %s”’,LastName,FirstName);
If (strlen(buffer) > 15)

printf(“Long name %s %s\n”,FirstName,LastName);

Department of Computer Science & Engineering, ATMECE, Mysuru

o] College of Engmc.ang

The sscanf function allows us to read from a string
argument using scanf rules

First argument of sscanf is string to read from,
remaining arguments are as in scanf
Example:
char buffer[100] = “A10 50.0”;
sscanf(buffer,”%c%d%1”’,&ch,&1num,&fnum);

/[* puts ‘Ain ch, 10 in inum and 50.0 in fnum */

Department of Computer Science & Engineering, ATMECE, Mysuru

- Data Structure and Applications —
18CS32

Module 2:
Stacks , Recursion and Queues

DATA STRUCTURES

ATME
College of EnginccringW at is d Stac .

@ It isan ordered group of homogeneous items of elements.

® Elements are added to and removed from the top of the stack (the
most recently added itemsare at the top of the stack).

® The last element to be added is the first to be removed (LIFO:
Last In, First Out).

A stack of

cafeteria trays A stack of

neatly folded shirts

A stack
of pennies

Department of Computer Science & Engineering. ATMECE, Myvsuru

2Lc) College of Engineering

Stack Specification

re R 4 m & oty
/_\\ I ?\ /{ T}-d , &
e . ,. \‘) e _ P 74 :]
S— -
&
URKAS
RIGISTILAR
"

@ Definitions: (provided by the user)
e MAX_ITEMS:Maxnumber of items that might be on the stack
® ltemType: Data type of the items on the stack

® Operations

® MakeEmpty

® Boolean ISEmpty

® Boolean IsFull

® Push (ItemType newltem)

@ Pop (ItemType& item) (or pop and top)

Department of Computer Science & Engineering. ATMECE, Myvsuru

A

/f-\, r]"‘. \ /,g 4 _,
‘/ R“. :‘ }A \'// E i \J _ .

s College of Engineering

@ Function:Adds newltem to the top of
the stack.

@ Preconditions; Stack has been initialized and
IS not full.

@ Postoonditions: newltem is at the top of
the stack.

Department of Computer Science & Engineering. ATMECE, Myvsuru

I =|I A — - - — =~ I S

STACK OPERATIONS

The bottom of a stack is a sealed end. Stack may have a capacity
which is a limitation on the number of elements in a stack. The operations
on stack are

*Push: Places an object on the fop of the stack.
* Pop: Removes an object from the top of the stack.
* IsEmpty: Reports whether the stack is empty or not.

* IsFull: Reports whether the stack exceeds limit or not.

C

| b
a a

(i)stack (ii)push(s,a) (ii)push(s,d)-stack overflow (iv)pop(s)

(v)pop(s)-stack underflow

mlTJA T M E

STHCK

PUSH , POP

FIRST IN LAST OUT LLAST IN FIRST OUT

)

= N [W) [B O

m NULL

Department of Computer Science & Engineering, ATMECE, Mysuru

(& 2 B~ S B S S)

1 «—— push(1)
«—— topl)) 5« topl)
3 3
4 4
5 5

Department of Computer Science & Engineering, ATMECE, Mysuru

Department of Computer Science & Engineering, ATMECE, Mysuru

A 1 M B O

2Lc) College of Engineering

Pop (ItemType& ite

® Function: Removes topltem from stack and returns it in item.

® Preconditions: Stack
® Postoondrtions; Tope
item Isacopyoft

nas been initialized and Is not empty.
ement has been removed from stack and

ne removed element.

Department of Computer Science & Engineering. ATMECE, Myvsuru

r '17‘\

A
[\

i D0 4 PR 12, e N

0

stack Push{2

t

o =5 s
1

2

2 (0 —e

stack Push(3)

top
—e

3

2

0

3

1

2

3

o ul p.
Shonk
WL

e A

s

stack Pop({x) stack Push(10)

stack.Push(5) stack Pop(x)
2 |o Rl 2 o 2 o
to
3 |28 = 3 f—e| 10 1
top
—e | 5 |2 5 [2 5 |2 5 2
3 3 3 3

Department of Computer Science & Engineering, ATMECE, Mysuru

College of Engineering

|mp|ementing 3 Stac P

® At least three different ways to implement a stack
e array
@ vector
e linked list

® \Which method to use depends on the application
e What advantages and disadvantages does each
Implementation have?

Department of Computer Science & Engineering. ATMECE, Myvsuru

A1 ME

2Liie] College of Engineerin

AJA

Implementing Stacks: AFT%y..

e Advantages
® best performance

e Disadvantage
e fixed size

@ Basic implementation
e initially empty array
e field to record where the next data gets placed into

e if array is full, push() returns false
otherwise adds it into the correct spot

e if array Is empty, pop() returns null
otherwise removes the next item in the stack

Department of Computer Science & Engineering. ATMECE, Myvsuru

“ 1 College of En 1nccring
class StacgkArray {

private Object|] stack;

private int nextin;

public StackArray(int size) {
stack = new Object[size];
nextin = 0;}

public boolean push(Object data);

public Object pop();

AT M E ety [~

public void clear();
public boolean isEmpty();

public boolean isFull();

Department of Computer Science & Engineering. ATMECE, Myvsuru

atme Collcgc of Englnccr@m .
| based)
public boolean push(Object data) {

If(nextin == stack.length) { return false; } //stack
is full

/l add the element and then increment nextln
stack[nextIn] = data;
nextin++:

return true,

Department of Computer Science & Engineering. ATMECE, Myvsuru

JA T M E

2lc) College of Enginccri!p ole

public Object pop() {
If(nextin == 0) { return null; } // stack Is empty

/[decrement nextin and return the data
nextin--;

Object data = stack[nextIn];

return data;

}

Department of Computer Science & Engineering. ATMECE, Myvsuru

m A T M E p— #
a <1 College of Engineering s RS

Implementation

#include "ltemType.h"
// Must be provided by the user of the class
// Contains definitions for MAX_ITEMS and ItemType

class StackType {
public:
StackType();
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
void Push(ltemType);

void Pop(ltemType&);
private:

int top;
ltemType items[MAX_ITEMS];

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA M- — ()
= PRIl pPlementation = B e

(cont.)
StackType::StackType()
{
top =-1;
}
void StackType::MakeEmpty()
{
top =-1;
}
bool StackType::IsEmpty() const
{
return (top == -1);
}

Department of Computer Science & Engineering. ATMECE, Myvsuru

A Stat

o] College of

gcontJ
?ool StackType::IsFull() const
return (top == MAX_ITEMS-1);
}

{void StackType::Push(ltemType newltem)
top++;

items[top] = newltem;

}

void StackType::Pop(ltemType& item)
{

item = items[top];
top--;
}

Department of Computer Science & Engineering. ATMECE, Myvsuru

¢k [T | B ¢
ngineering e ik

atme Collcz‘z‘sta.‘(ca\"l'Q

A 1. ME

RLGISTIAR S
SO Saag 2w is

O TQEVaﬂr dft)lquajg‘rom trying to push an element onto

a full stack.
If(!stack.IsFull())

stack.Push(item);
Stack underflow

@ The condition resulting from trying to pop an empty stack.
If(!stack.IsEmpty())

stack.Pop(item);

Department of Computer Science & Engineering. ATMECE, Myvsuru

A T Impleganisiatg e

2 110] College of Engineering

templates

® Templates allow the compiler to generate multiple versions
of a class type or a function by allowing parameterized types.

Department of Computer Science & Engineering. ATMECE, Myvsuru

templates

template<class ItemType>
class StackType {
public:
StackType();

void MakeEmpty();
bool IsEmpty() const;

bool IsFull() const;
void Push(ltemType);
void Pop(ltemType&);

private:
Int top;
ltemType items[MAX_ITEMS];

Department of Computer Science & Engineering. ATMECE, Myvsuru

@l JA T M E

s College of Engineering

Example using templates. -

// Client code
StackType<int> myStack;
StackType<float> yourStack;

StackType<StrType> anotherStack;

myStack.Push(35);
yourStack.Push(584.39);

The compiler generates distinct class types and qgives its own internal
name to each of the types.

Department of Computer Science & Engineering. ATMECE, Myvsuru

‘ /C‘% ; T I.\\“V/z T;{L
2L} College of Engineering

templates

® The definitionsof the member functionsmust be
rewritten as function templates.

template<class IltemType>
StackType<IltemType>::Stack Type()

{
top =-1;

¥

template<class ltemType>
void StackType<ItemType>::MakeEmpty()

{
top =-1;

}

Department of Computer Science & Engineering. ATMECE, Myvsuru

2L} College of Engineering

" s » — [] : o ur
A g B, N / : 4
AT MEUnehionstenagiabes (G
A A A ALY A —_— &
— -
& !
UKAS
T
FSA) Snaf 20 is

template<class kam)ppeo>nt-)

bool StackType<IltemType>::IsEmpty() const
ireturn (top == -1);

template<class ltemType>

bool StackType<IltemType>::IsFull() const
jreturn (top == MAX_ITEMS-1);

template<class ltemType>

void StackType<ItemType>::Push(ltemType newltem)
{

top++;

Iitems[top] = newltem;

by

Department of Computer Science & Engineering. ATMECE, Myvsuru

iiE]A.I M E

] College of Engmccnn£

(cont.)

template<class ItemType>
void StackType<ItemType>::Pop(ltemType& item)

{

Item = items|top];
top--;
¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

A J K \a sl EN : b : SSi
) } Y ol - -
A T l ! l Q - " g i
p. A F N) z
-
o 5
UKAS
TS S AN

2Liie] College of Engineering .
dynamic array
allocation

4

template<class ltemType>

class StackType {

public:
StackType(int);
~StackType();
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
void Push(ltemType);
void Pop(ltemType&);

Department of Computer Science & Engineering. ATMECE, Myvsuru

_ College of Engineering iy

AT Implensentingstasks US|
dynamic array allocat
(cont.)

template<class ltemType>
StackType<ItemType>::Stack Type(int max)

{
maxStack = max;

top = -1;
Items = new ItemType[max];
}

template<class ltemType>
Stack Type<ItemType>::~Stack Type()

{
delete [] items;

}

Department of Computer Science & Engineering. ATMECE, Myvsuru

® Postfix notation Is another way of writing arithmetic
expressions.

@ |n postfix notation, the operator is written after the two
operands.

Infix; 2+5 podtfix; 25 +
® Expressionsare evaluated from left to right.

® Precedencerulesand parenthesesare never needed!!

Department of Computer Science & Engineering. ATMECE, Myvsuru

4 College of Engineering

expressions (cont.)

T ; 7
£ 4 Sl &
A T Bxa e |~ B ()
;itn" Ml UKAS IR

' ; ; ;

45+72-~-" 454+72-" 4 5

9
¢) :
9g72«% 972" 985 "
lW_, | |
5 45

Department of Computer Science & Engineering, ATMECE, Mysuru

A [) [] _,‘. 9, .‘."?‘-' r

A PostfiX umeeesienses (“ B ()
sy Bl S I e oSS
TS ==

; ’~1" College of Engineering

Algorithm using stacks

(cont.)
¢) ‘ 0

45 +72 =" 45 +72 =" R 972«
5 7
4 4 9 9
97 2 - 972-=-"* 95
2
7 5
9 9 45

Department of Computer Science & Engineering, ATMECE, Mysuru

B), N ° 4 :
AT M &pe—

oo College of Engineering

. Algorithm using
WHILE mogdipmuliems exist

Get an item

IF item Is an operand
stack.Push(item)

ELSE
stack.Pop(operand?2)
stack.Pop(operandl)
Compute result
stack.Push(result)

stack.Pop(result)

Department of Computer Science & Engineering. ATMECE, Myvsuru

AT M B

=\ f ceothegﬁlf)cdlf/gfor a function that replaces each €epy o1
Item in a stack with another item. Use the following
specification. (this function is a client program).

Replaceltem(Stack Type& stack, ItemType oldItem,
ItemType newltem)

Replaces all occurrences of oldIitem with newltem.
stack has been initialized.

Each occurrence of oldItem in stack has been
replaced by newltem.

(Youmayuse any of the member functions of the StackType, but
you may not assume any knowledge of how the stack is
Implemented).

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M L o ——

Ligc | College of Engineering

ItemType item;
StackType tempStack;

while (!Stack.IsEmpty()) {
Stack.Pop(item);
iIf (item==oldltem)
tempStack.Push(newltem);

else
tempStack.Push(item); Stack
¥
while ('tempStack.IsEmpty()) {
tempStack.Pop(item);
Stack.Push(item);

Department of Computer Science & Engineering. ATMECE, Myvsuru

Module 2:
Queues

DATA STRUCTURES

/:_\ - ?‘.\ /,g T’“A\".
AT M E

2L} College of Engineering

RLGASTR AR S

e |t Is an ordered group of homogeneous items o
elements.

® Queues have two ends:
e Elements are added at one end.
e Elements are removed from the other end.

@ The element added first i1s also removed first
(FIFQO: First In, First Out).

— @B 0=

Department of Computer Science & Engineering. ATMECE, Myvsuru

- A e ?‘.\ / T»«’-' & & e uf p
2 0c) College of Engineering aes il UKAS I '

@ Definitions: (provided by the user)

e MAX_ITEMS: Max number of items that might be on the
queue

e ItemType: Data type of the items on the queue

® QOperations
— MakeEmpty
— Boolean IsEmpty
— Boolean IsFull
— Enqueue (ItemType newltem)
— Dequeue (ItemType& item) (

Department of Computer Science & Engineering. ATMECE, Myvsuru

‘ []JA I M E

oo College of Engineering

ngueue (ItemType newlteR I

@ Function: Adds newltem to the rear of the queue.

@ Preconditions: Queue has been initialized and is not
full.

@ Postconditions: newltem is at rear of queue.

Department of Computer Science & Engineering. ATMECE, Myvsuru

" Collcgc of Engmccnng

""" ~ Dequeue (ItemType& |tem) -

@ Function: Removes front item from queue and returns
It In item.

@ Preconditions: Queue has been initialized and 1s not
empty.

@ Postconditions: Front element has been removed from
queue and item iIs a copy of removed element.

Department of Computer Science & Engineering. ATMECE, Myvsuru

/\ T M E W
Collcgc I»mq:x}lc@

Issues _
® Implement the queue as a circular structure.

® How do we know if a queue is full or empty?
@ Initialization of front and rear.
® Testing for a full or empty queue.

Department of Computer Science & Engineering. ATMECE, Myvsuru

m|]

front —e=
rear —a-

g.Enqueue(2)
2 10
1
2
3

q.Enqueue(20) 777

rear

'

10 |3

q.Enqueue(3) q.Enqueue(s)
item =2
front front
—e| 2 0 —e 2 0 2 0
rear
—e| 3 | 3 [¢ ML 3 |4
front
rear —
—a 5 |2 “%E.. 5 2 rear
3 3 3
rear
— 20
Let the guele elements
"wrap around" 3
0 front 5
if(rear == maxQue -—1) -
rear = 0; 10
else
rear = rear + 1;
or rear 0
rear = (rear + 1) % maxQue;
3
fing queue
front
2

q.Dequeuefitem)

q.Dequelelitem)

item =3
2 |0
3 |
5 |2
3

Department of Computer Science & Engineering, ATMECE, Mysuru

2 |p
3 |1
front
ar
rear | 10 |5

_,‘,‘\ ’l

1w

!-u‘

q.Engueue(10)

\)"‘w ul'q >

(G

AT,

 r D0 4 RIS w2 e YO

" g Enqueue(30) q.Enqueue(50) ?2?
rear
—e| 20 g e 10 2R 10 The queue Is full !!
rear rear
12 |1 —e | 30 |1 —e| 30 1 What Is the condition for a full queue ?
front 5 b front 5 b front 5 I
rear + 1 == front
10 |3 1013 1013

g.Dequeue(itern) g.Degueue{item) q.Dequeue{item) g.Degueue(item)

item =25 item =10 item =20 item = 30
20 |o front 20 |q 20 | 20 g The ¢ueue Iz empty !!
front
rear — rear
—e| 30 |1 TCR 0 30 1 jaar 30 (1 T=e| 30 |1 Whatlsthe condition foran empty queue ?
front
5 @ 5 2 5 p 2 B rear + 1 == front
front
—e| 10 (3 10 |3 10 (3 10 |3

We cannot distinguish between the two caoses !l

Department of Computer Science & Engineering, ATMECE, Mysuru

mcc

[Make frﬁﬁt p’o i
Coll (1

nt'in the queue (one memory locatie
will be wasted).

q.Enqueue{30)

BEFORE !
roar rear
— - 20 20
—e| 20 0 0 The queue Is full !!
rear
50 50 —e| 30 N1 What Is the condition for a full queue ?
front reserved > front reserved |
D 5 5 rear + 1 == front
front
—e| 10 10 |3 10 |3
q.Dequeue(item) q.Degueue(item) q.Dequeue(item)
item = 10 item = 20 item = 30
20 20 front reserved 20
20 [0 pse The queue Is empty !!
rear 30 rear rear —@~ | reserved
= —e| 30 1 | 30 1 rear 30
—- What Is the condition for an empty queue ?
front reserved
—e| 5 5 P2 5 |2)
front | cesecved rear == front
10 —e| 4n |3 10 (3 10

Based on this solufion, one memotry location is wasted !
Department of Computer Science & Engineering, ATMECE, Mysuru

A re A A ' B
A ‘ A

/ | v -

/A | \/ 1 |

| E. 3 LY A ’ ‘

2 1) College of Engineering et
qEnqueue(?) qEnqueue(3) i Ciwuae; qDequeue(item) qDequeue(item) qEnqueue(10)
item = 2 item = 3
front ed
front
rear | front
1 1 Tl 3 |1 3 I 3)% rcsc3w 1 rcsnéwcd1
rear r
- 5 2 o el 6 MR g R Ll e | 5
ront rear
reir.. weserved |3 fr% reserved |3 Ir% reserved | 3 [T(EIL ceseoved |3 3 3 —&| 10 |3
q.Enqueue(20) q.Enqueue(30) 7?77
rear
e —e| 20 | quete is full {1
fr% rcsgwcd ' lroEl’ EC%WCM rear + 1 == front
b 5 D in general:
(rear + 1} % maxQue == front
10 |3 10 |3

Department of Computer Science & Engineering, ATMECE, Mysuru

LIA T M E o

= e College of Engineering
q.Dequeue(item) q.Dequeuefitem) q.Dequeue{item)
item =5 item =10 item = 20
rear
| 20 |g rear 50 rear 50 rear —em [ceserved
food 0 0 front —e= | 20 |0
L | ey 3 | 3 | 3 |t
front
5 > ron rcscsr:vcd P 5 P 5 P
ed
10 |3 10 |3 fronl “’:"g 3 10 |3

Department of Computer Science & Engineering, ATMECE, Mysuru

oo College of Engineering

Implementation

template<class ltemType>
class QueueType {
public:
QueueType(int),
QueueType();

~QueueType();
void MakeEmpty():

bool ISsEmpty() const;

bool IsFull() const;

void Enqueue(ltemType);
void Dequeue(ltemType&);

Department of Computer Science & Engineering. ATMECE, Myvsuru

A TQue Uep it |~

College of Engineering
(cont.)

template<class ItemType>
QueueType<ltemType>::QueueType(int max)
{

maxQue = max + 1,

front = maxQue - 1;

rear = maxQue - 1,

items = new ltemType[maxQue];

¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

o Quete T e o

(cont.)

template<class ItemType>
QueueType<itemType>::~QueueType()

{

delete [] items;

}

Department of Computer Science & Engineering. ATMECE, Myvsuru

(cont.)

template<class ltemType>
void QueueType<itemType>:: MakeEmpty()

{

front = maxQue - 1,
rear = maxQue - 1;

}

Ejf\1?JWE, = o By

Department of Computer Science & Engineering. ATMECE, Myvsuru

template<class (eQTprr\JeL

{
return (rear == front);

}

template<class IltemType>

{
}

return ((rear + 1) % maxQue ==

L1, Gt e (=] ¢

bool QueueType<itemType>:.IsEmpty() const

bool QueueType<ltemType>::IskFull() const

front);

Department of Computer Science & Engineering. ATMECE, Myvsuru

“JA T M E #
o coies Qg T e v

(cont.)
template<class ItemType>

void QueueType<IitemType>:.Enqueue (ltemType
newltem)

{

rear = (rear + 1) % maxQue;
items|[rear] = newltem,

}

Department of Computer Science & Engineering. ATMECE, Myvsuru

@[JA T M E = B

(cont.)
template<class ItemType>

void QueueType<itemType>::.Dequeue (ltemType&
item)

{

front = (front + 1) % maxQue;

item = items]front];

}

Department of Computer Science & Engineering. ATMECE, Myvsuru

oo College of Engineering

A TQYe b~

overflow

® The condition resulting from trying to add an element onto a
full queue.

1f(1g.I1sFull())
g.Enqueue(item);

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA T M5 —
aiiic) College of E ur%

underflow

® The condition resulting from trying to remove an element
from an empty queue.

1f(1g.IsEmpty())
g.Dequeue(item);

Department of Computer Science & Engineering. ATMECE, Myvsuru

- — ()
bnraecogmzmg DaliNarogEdRe

e Apalindrome Is a string that reads the same forward and
backward.

Ablewes | ee | sswHba

e \\é will read the line of text into both a stack and a
queue.

® Compare the contents of the stack and the queue
character-by-character to see if they would produce the
same string of characters.

Department of Computer Science & Engineering. ATMECE, Myvsuru

B o=

Stack

Department of Computer Science & Engineering, ATMECE, Mysuru

il .l
2LLC Collcgc%g ngineerning

palindromes

#include <iostream.h>
#include <ctype.h>
#include "stack.h"
#include "queue.h*

Int main()

{
StackType<char> s;

QueType<char> q;
char ch;

char sltem, qltem;
Int mismatches = 0;

Department of Computer Science & Engineering. ATMECE, Myvsuru

A Exainp e ———

] College of Engineeri

while((1g.1s mptyl(pg (as sEmpty())){
s.Pop(sltem);
g.Dequeue(qltem);

If(sltem != gltem)
++mismatches;

¥
If (mismatches == 0)

cout << "That is a palindrome" << endl;
else

cout << That is not a palindrome" << endl;

return O;

¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

Priority Queues

-Review the abstract data type Priority Queues
-Review different implementation options

at; € Agj%tééc%{g

@ Apriority queue Is a collection of zero or more items,
@ assoclated with each item is a priority

® Apriority queue has at least three operations
@ insert(item 1) (engqueue) a new item
® celete() (dequeue) the member with the highest

priority

e find() the item with the highest priority

O (item 1, p) decrease the priority of ith itemto
P

® Note that in a priority queue "firstin firstout" does not apply in
general.

Department of Computer Science & Engineering. ATMECE, Myvsuru

® The highest priority can be either the minimum value of all the
Iterrs, or the maximum

o \\e will assume the highest priority isthe
o Call the delete operation deleteMin().
o Call the find operation findMin().

® Assume the priority queue hasn members

Department of Computer Science & Engineering. ATMECE, Myvsuru

f Engineering

arine Colleg

® Heap.
® In the worst case insert() is ®(lg n) and
® deleteMin() 1s ©(lg n)
@ findvin() is ©(1)
@ decreaseKey(i, p) is ©(lgn)

rv N / 1 - p >
- RLGISTASS UKAS

Department of Computer Science & Engineering. ATMECE, Myvsuru

|

| Lnsqtc RS

1. Using an array ar.
@ insert() adds the new item into next empty position in arr, in
O(1).
@ findvin() is ®(n) In the worst case
® ddeteMin() 1s ®(n) in the worst case
©®(n) to find the minimum item
and ® (1) to move the last itemto the position of the deleted element.

® DecreasePriority(i, p) — decrease priority of ith item stored at
arri] in ®(1)

4x|8al1b|9c |7y

Department of Computer Science & Engineering. ATMECE, Myvsuru

= College of Engineering

Unsorted list: Linked List

2. Using a linked list.
@ insert() in ®(1) with appropriate pointers.
e findMin() is ®(n) since we may need to search the whole list.
® deleteMin() is ®(n)

In the worst case we may need to search the whole list, ®(n)
Delete item (1)

A 1 M E =

Department of Computer Science & Engineering. ATMECE, Myvsuru

s College of Engineering
1. Acircular arrayA. —
@ insert() must maintain a sorted list. /
®(n) in the worst case first
For example:

The new itemneeds to be inserted after the itemwith the highest priority.
So n-1 items have to be moved to make room.

@ findMin() is ®(1)

o CeleteMin() Is®(1) because the minimum itemis the first one in
the queue, and only the pointerto the first item needs to be
changed.

® DecreasePriority(i, p) — decrease priority of ith item, and
reinsert ®(n)

Department of Computer Science & Engineering. ATMECE, Myvsuru

m (L& o T —

2. Alinked list.
@ insert() Is®(n)

since in the worst case the whole list must be searched sequentially to
find the location for insertion.

@ findvin() is ©(1)
® deleteMinis ®(1)

since with appropriate pointers the first element of a linked list can be
deleted in ®(1).

Department of Computer Science & Engineering. ATMECE, Myvsuru

e College of Engineering

Ny | AT o N W
10T ~
(KA - <
L SN g

m e

Data Insert DeleteMin
Structure |WoOrst case |worst case

Heap o(lg n) o(lg n)

Unsorted | o(1) o(n)
(array or linked list)

Sorted

(arrayor ®(n) ®(1)
linked list)

Department of Computer Science & Engineering. ATMECE, Myvsuru

Backtracking- The Maze Problem

[|A short lissimssteseisses |~ ¥ ()

atine] College of Engineering

® Algorithm types we will consider include:
@ Simple recursive algorithms
=) @ Backtracking algorithms
@ Divide and conquer algorithms
@ Dynamic programming algor ithms
® Greedy algorithms
@ Branch and bound algorithms
@ Brute force algorithms
@ Randomized algorithms

Department of Computer Science & Engineering. ATMECE, Myvsuru

2L0c] College of Engineering

"""" Backtracking

® Suppose you have to make a series of decisions, among various
dhoicss, where
® Youdon’t have enough information to know what to choose
® Each decision leads to a new set of choices
® Some sequence of choices (possibly more than one) may be a
solution to your problem

® Backtracking is a methodical way of trying out various
sequences of decisions, until you find one that “works”

Department of Computer Science & Engineering. ATMECE, Myvsuru

m AT M E —

2L0c] College of Engineering

"""" Solving a maze

® Given amaze, find a path from start to finish

® At each intersection, you haveto decide between three or fewer
choices:
® (G0 straight
® (GO left
® GO right
® YU dont have enough information to choose correctly
® Each choice leads to another set of choices
® One or more sequences of choices may (or may not) lead to a solution
® Manytypes of maze problem can be solved with backtracking

Department of Computer Science & Engineering. ATMECE, Myvsuru

AL M | °

College of Engineering

Coloring a map

® Yu wish to color a map with
not more than four colors
® red, \ellow green, blue

® Adjacent countries must be in
different colors

® Youdon’t have enough information to choose colors
@ Each choice leadsto another set of choices

@ One or more sequences of choices may (or may not) lead to a
solution

@ Many coloring problems can be solved with backtracking

Department of Computer Science & Engineering. ATMECE, Myvsuru

AL ML |~

College of I.inginccring
Solving a puzzle

® In this puzzle, all holes but one
are filled with white pegs

® U can jump over one peg
with another

® Jumped pegs are removed

® The object is to remowe all
but the last peg

® Yu dont have enough information to jump correctly

® Each choice leads to another set of choices

® One or more sequences of choices may (or may not) lead to a solution
® Many kinds of puzzle can be solved with backtracking

Department of Computer Science & Engineering, ATMECE, Mysuru

oo College of Engineering

Backtracking (animation)

dead end
? A//v

2 dead end dead end
/ //

start—— 7?2 — ? A//v \dead end

dead end
\ /

success'

Department of Computer Science & Engineering. ATMECE, Myvsuru

r

AL ML |~

" s College of Enginccring
Terminology |
Atree is composed of nodes — 9
/ e @
/.0/. <:—».
There are three kinds of — — . ®
nodes: Ta o i
) L
(5 The (one) root node
Internal nodes Backtracking can be thought of
as searching a tree for a
@ Leaf nodes particular “goal” leaf node

Department of Computer Science & Engineering, ATMECE, Mysuru

m AT M E —

ainie | College of Engineering

Terminology Il

® Each non-leaf node in atree Is a parent of one or more other nodes
(its children)

@ Eachnode In the tree, other than the root, has exactly one parent

parent
Usually, however,
_— we draw our trees
> downward, with
parem the root at the top v
children children

Department of Computer Science & Engineering. ATMECE, Myvsuru

atiie] College of Engineering

"""" Real and virtual trees

® There Is a type of data structure called atree
@ But we are not using it here

@ Ifwe diagram the sequence of choices we make, the diagram
looks like a tree
@ In fact, we did just this a couple of slidesago

® Our backtracking algorithm “sweeps out a tree”’in “problem
space”

Department of Computer Science & Engineering. ATMECE, Myvsuru

A 1 M N
College of Engineering

The backtracking algorithm™
® Backtracking is really quite simple--we ““explore” each node,
as follows:

® D “explore”’node N:

1. If N is a goal node, return “success”
2. If N Is a leaf node, return “failure”
3. For each child C of N,

1. ExploreC

1. If C was successful, return “success”
4. Return “failure”

Department of Computer Science & Engineering. ATMECE, Myvsuru

College of Engineering . UKAS
Full example: Map coloring = -~

® The Four Color Theorem states that anymap on aplane can be
colored with no more than four colors, so that no two countries
with a common border are the same color

® For most maps, finding a legal coloring Is easy
® For some maps, it can be fairly difficult to find a legal coloring
® \\e will develop a complete Javaprogram to solve this problem

Department of Computer Science & Engineering. ATMECE, Myvsuru

atine] College of Engineering

"""" Data structures

® \\é need a data structure that is easy to work with, and
supports:
@ Setting a color for each country
@ For each country, findingall adjacent countries
® \/\é can do this with two arrays
e Anarray of “colors”, where countryColor/[i] is the color of

the it country

® Aragged array of adjacent countries, where map/[i][j] isthe
Jth country adjacent to country i

Example: map[5][3]==8 means the 3t country adjacent to
country 5 is country 8

Department of Computer Science & Engineering. ATMECE, Myvsuru

int map[]];

void createMap() {

map = new Int[7][];

map[0] = new int[]
map[1] = new int[]
map|[2] = new Iint[]
map|[3] = new Int[]
map[4] = new Iint[]
map[5] = new int[]
map|[6] = new Int[]

Department of Computer Science & Engineering. ATMECE, Myvsuru

()

%1 70

200 College of Engineering

== Setting the initial colors

static final int NONE = 0;
static final int RED = 1;
static final int YELLOW = 2;
static final int GREEN = 3;
static final int BLUE = 4;

Int mapColors[] = { NONE, NONE, NONE, NONE,
NONE, NONE, NONE };

Department of Computer Science & Engineering. ATMECE, Myvsuru

alel College of Engineering

The main program

(The name of the enclosing class is ColoredMap)

public static void main(String args[]) {
ColoredMap m = new ColoredMap();
m.createMap();
boolean result = m.explore(0, RED);
System.out.printin(result);

m.printMap();

Department of Computer Science & Engineering. ATMECE, Myvsuru

2lie] College of Engineering

= The backtracking method

boolean explore(int country, int color) {
If (country >= map.length) return true;
If (okToColor(country, color)) {

mapColors[country] = color;
for (inti = RED; i <= BLUE; i++) {
If (explore(country + 1, 1)) return true;
b
s

return false;

¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

o College of Engineering

boolean okToColor(int country, int color) {
for (int 1 =0; i < map[country].length; i++) {
Int ithAdjCountry = map[country][i];
If (mapColors[ithAdjCountry] == color) {
return false;

¥
¥

return true;

¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

A 1 M 5

e

&

[JA T M E o &
2 0S Collcg.c of Erllginccring
Printing the results

void printMap() {
for (int1=0; i <mapColors.length; i++) {

System.out.print("map[" +1+ "] Is");

switch (mapColorsl[i]) {
case NONE: System.out.printin("none"); break;
case RED: System.out.printin(*'red"); break;
case YELLOW: System.out.printin(*'yellow"); break;
case GREEN: System.out.printin(green"); break;
case BLUE: System.out.printin("blue™); break;

Department of Computer Science & Engineering. ATMECE, Myvsuru

AT M E
Stie Coll&u Fakiel

e \\ewent through all the countries recursively, starting with
country zero

® At each country we had to decide a color
e |t hadto be different from all adjacent countries
e |f we could not find a legal color, we reported failure

e If we could find a color, we used 1t and recurred with the next
country

e |f we ran out of countries (colored themall), we reported
SUCCESS

® \When we returned from the topmost call, we were done

Department of Computer Science & Engineering. ATMECE, Myvsuru

A 1 M E

Lic) College of Engi:'nccring]
What is recursion?
Int f(int x)
® Sometimes, the best way to {
solve a problem is by solving inty.
a staller- version of the exact
same problem first if(x==0)
® Recursion Is a technique that return 1:
solves a problem by solving a
smaller problem of the same else {
type y =2 * f(x-1);
return y+1;
}
}

Department of Computer Science & Engineering. ATMECE, Myvsuru

A1 M L o —

] College of Engineering

Problems defined recurswely"‘“

® There are many problems whose solution can be defined
recursively

Example: n factorial

1 ifn=0

nl= -1 if 1> 0 (recursive solution)
n-1)*n
1 Ifn=0

nl= PN O(closed form solution)

1#2%3% *(n-1)*n M

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA T M Y o |

Collcgc of Engineering

" Coding the factorial functiofm S

® Recursive implementation

Int Factorial(int n)

{

If (n==0)
return 1;

else

return n * Factorial(n-1);

¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

s "}?‘i

(3

b

N ,\T.\],_.

g

Final value = 120
bl=5*24=120is returned

51 51
(SR |
4" 3l
7
3*2l 2
I g7 21 =2%1 =2Iisreturned
2+ 11 IEXET
i J—_r\ 1'=1%1=1Isretuned
1 * 0l 1*0l
} 1 1 is retumnmed
1 1

Department of Computer Science & Engineering, ATMECE, Mysuru

2.2] College of Engineering

AT M E o —

Coding the factorial functlocont)

® |terative iImplementation

Int Factorial(int n)

{
Int fact = 1;

for(int count = 2; count <= n; count++)
fact = fact * count;

return fact;

¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

w12 T Aot Ses——
College OAQ\Q@ -

@ Given n things, how many different sets of size k can be
chosen?
n- nl1 , nl
K K Kl 1<k<n
n_ n!
K~ Ky ks
with base cases
n_ _ n_ _
1 =nk=1, =1(k=n)

Department of Computer Science & Engineering. ATMECE, Myvsuru

College of Engineering

n choose k (combinations)

AL ML |~

Int Combinations(int n, int k)

{
if(k == 1)

return n;
else if (n == k)
return 1,
else
return(Combinations(n-1, k) + Combinations(n-1, k-1));

¥

Department of Computer Science & Engineering. ATMECE, Myvsuru

SN OneNts Of a Recy St

oo College™of Engineering

Algorithm Design

1. What is asmaller identical problem(s)?
| Decomposition

2. How are the answers to smaller problems combined to form the
answer to the larger problem?

| Composition

3. Whichis the smallest problem that can be solved easily (without
further decomposition)?

| Base/stopping case

Department of Computer Science & Engineering. ATMECE, Myvsuru

e Usually quite confusing the first time

@ Start with some simple examples
@ recursive algorithms might not be best

e Later with inherently recursive algorithms
@ harder to implement otherwise

Department of Computer Science & Engineering. ATMECE, Myvsuru

AL ML |~

College of Engineeri

actorial (N!)

® NI=(N-1)! *N [forN>1]
e 11=1
e 3!
= 21*3
= (11*2)*3
=1*2*3
® Recursive design:
® Decomposition: (N-1)!
e Composition: * N
® Base case: 1!

Department of Computer Science & Engineering. ATMECE, Myvsuru

ATME
o o P

Method

public static int factorial (i1nt n)

{

int fact;
if (n > 1) // recursive case (decomposition)

fact = factorial(n - 1) * n; // composition
else // base case
fact = 1;

return fact;

Department of Computer Science & Engineering. ATMECE, Myvsuru

Qe e

2 Foglege of Engineering
l! !I’l > 1)

fact = factorial (2) * 3;
else

fact = 1;
return fact;

Department of Computer Science & Engineering, ATMECE, Mysuru

B

2ue Foellege of Engineering
l! !I’l > 1)

fact = factorial (2) [* 3;
else

fact = 1;
return fact;

public static int factorial(int\27/
{

int fact;

if (n > 1)

fact = factorial(l) * 2;
else

fact = 1;

return fact;

Department of Computer Science & Engineering, ATMECE, Mysuru

B e

2 Foglege of Engineering
l! !I’l > 1)

fact = factorial (2) * 3;
else

fact = 1;
return fact;

public static int factorial (int 2)

{

int fact;

if (n > 1)
fact = factorial(l)| * 2;

else ‘\\\\\\\\
fact = 1;

return fact;

public static int factorial(iﬁE\if/
{

int fact;

if (n > 1)

fact = factorial(n - 1) * n;
else

fact = 1;

return fact;

Department of Computer Science & Engineering, ATMECE, Mysuru

Qe e

2 Foglege of Engineering
l! !I’l > 1)

fact = factorial(2) * 3;

else
fact = 1;
return fact;

public static int factorial (int 2)

*2;

public static int factorial (int 1)

{

int fact;

if (n > 1)

fact = factorial(n - 1) * n;
else

fact = 1;

:} return 1;

Department of Computer Science & Engineering, ATMECE, Mysuru

o

C

Qe e

2 Foglege of Engineering
l! !I’l > 1)

fact = factorial (2) * 3;
else

fact = 1;
return fact;

AT,
e S

public static int factorial (int 2)

public static int factorial (int 1)

{

int fact;

if (n > 1)

fact = factorial(n - 1) * n;
else

fact = 1;

:} return 1;

Department of Computer Science & Engineering, ATMECE, Mysuru

[e

fcetege of Engineering
1)
fagt =y factorial (2) * 3;

public static int factorial (int 2)

{

int fact;

if (n > 1)

fact =1 * 2;
else

fact = 1;

:;>geturn 2;

Department of Computer Science & Engineering, ATMECE, Mysuru

T e

fcetege of Engineering

public static int factorial (int 2)

{

int fact;

if (n > 1)

fact =1 * 2;
else

fact = 1;

:;>geturn 2;

Department of Computer Science & Engineering, ATMECE, Mysuru

e

ut o etlege of Engineering
n > 1)
fact = 2 * 3;
else
fact = 1;
return 6;

Department of Computer Science & Engineering, ATMECE, Mysuru

public static int factorial (int n)

Wa,

N O FE {
ce ~HER ...

ccﬁng if (n > 1) // recursive case (decomposition)
fact = factorial(n - 1) * n; (composition)

(decompositi | <o
on) }

factorial (4)

—

factorial (3) 4

Department of Computer Science & Engineering. ATMECE, Myvsuru

public static int factorial (int n)

Wa,

N O FE {
ce ~HER ...

ccﬁng if (n > 1) // recursive case (decomposition)
fact = factorial(n - 1) * n; (composition)

decomposrtl elss // base case
on) }

factorial (4)

—

factorial (3) 4
factorial (2) 3

Department of Computer Science & Engineering. ATMECE, Myvsuru

public static int factorial (int n)

Wa,

N O FE {
ce ~HER ...

ccﬁng if (n > 1) // recursive case (decomposition)
fact = factorial(n - 1) * n; (composition)

decomposrtl elss // base case
on) }

factorial (4)

—

factorial (3) 4

‘(///\\\\A

factorial (2) 3

—

factorial (1) 2

Department of Computer Science & Engineering. ATMECE, Myvsuru

public static int factorial (int n)

A E {
| B -
,”THR College eering if (n > 1) // recursive case (decomposition)

fact = factorial(n - 1) * n; (composition)

Om pOSitiO el;icé/:b??e case
n))

return fact;

factorial (4)

TN

factorial (3) 4

/////?k\\\\

factorial (2) 3

TN

factorial(l)->1 2

Department of Computer Science & Engineering. ATMECE, Myvsuru

public static int factorial (int n)

A E {
| B -
,”THR College eering if (n > 1) // recursive case (decomposition)

fact = factorial(n - 1) * n; (composition)

Om pOSitiO el;icé/:b??e case
n))

return fact;

factorial (4)

TN

factorial (3) 4

/////1*\\\\\

factorial (2)—->2 3

Department of Computer Science & Engineering. ATMECE, Myvsuru

public static int factorial (int n)

A E {
| B -
,”THR College eering if (n > 1) // recursive case (decomposition)

fact = factorial(n - 1) * n; (composition)

Om pOSitiO el;icé/:b??e case
n))

return fact;

factorial (4)

TN

factorial (3) —>6 4

Department of Computer Science & Engineering. ATMECE, Myvsuru

public static int factorial (int n)

A E {
| B -
,”THR College eering if (n > 1) // recursive case (decomposition)

fact = factorial(n - 1) * n; (composition)

Om pOSitiO el;icé/:b??e case
n))

return fact;

factorial (4) —>24

Department of Computer Science & Engineering. ATMECE, Myvsuru

AT M E
College of Iimcpirﬂ

Method

public static int factorial (int n)

{

int fact=1; // base case value
if (n > 1) // recursive case (decomposition)
fact = factorial(n - 1) * n; // composition

// else do nothing; base case

return fact;

Department of Computer Science & Engineering. ATMECE, Myvsuru

College of Engineering

Fibonacci Numbers

A1 M L o =~

® The Nth Fibonacci number is the sum of the previous two
Fibonacci numbers
©0,1,1,23,5,8, 13, ...
® Recursive Design:
e Decomposition & Composition
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
@ Base case:
fibonacci(1)=0
fibonacci(2) =1

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA T M E o —

atme ng:_llcgc of Engineering

1bonacci Method

public static int fibonacci (int n)
{
int fib;
if (n > 2)
fib = fibonacci(n-1) + fibonacci (n-2);
else 1f (n == 2)
fib = 1;
else
fib = 0;

return fib;

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA T M E o —

Collcgc of Engineering

" Execution Trace (decomposition)

fibonacci (4)

N

fibonacci (3) fibonacci (2)

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA T M E o —

Collcgc of Engineering

" Execution Trace (decomposition)

fibonacci (4)

N

fibonacci (3) fibonacci (2)

N

fibonacci (2) fibonacci (1)

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA T M L p—
e College of Engineering
Execution Trace (compositid

fibonacci (4)

N

fibonacci (3) fibonacci (2)

N

fibonacci (2)->1 fibonacci (1) ->0

Department of Computer Science & Engineering. ATMECE, Myvsuru

LA T M L p—
e College of Engineering
Execution Trace (compositid

fibonacci (4)

N

fibonacci (3)-—>1 fibonacci (2)->1

Department of Computer Science & Engineering. ATMECE, Myvsuru

ATM R R embher

oo College of Engineering

Key to Successful Recursion

e if-else statement (or some other branching
statement)

® Some branches: recursive call

e "smaller" arguments or solve "smaller" versions of the
same task (decomposition)

e Combine the results (composition) [if necessary]

® Other branches: no recursive calls
@ stopping cases or base cases

Department of Computer Science & Engineering. ATMECE, Myvsuru

Towels.of TETO—

® Mowen (4) disks from pole Ato pole C
® suchthat adiskis never put on asmaller disk

Department of Computer Science & Engineering. ATMECE, Myvsuru

A L ML e —
B | cdMIMEr Bnfthecelisk
® Mowen-1(3)disksfromAto B

® Mowe 1disk fromAtoC
® Mowven-1(3) disksfrom Bto C

Department of Computer Science & Engineering, ATMECE, Mysuru

- -~ — e \‘ "Ill »
\‘

el

2o College of Engineering

Hanoi towers

public static void solveTowers(int count, char source,
char destination, char spare) {

if (count==1) {

System.out.printIn("Move top disk from pole " + source +
" to pole " + destination);

by

else {
solveTowers(count-1, source, spare, destination); // X
solveTowers(1, source, destination, spare); Y
solveTowers(count-1, spare, destination, source); // Z

} /lendif
} // end solveTowers

Department of Computer Science & Engineering. ATMECE, Myvsuru

LJAT M E o —

2| ColIRRGUIESIONTRAE:

The order of recursive calls that results from

solveTowers (3,A,B,C)

solveTowers(3,A,B,C)

v

Y

v

solveTowers(2,A,C,B)

solveTowers(1l,A,B,C)

solveTowers(2,C,B,A)

Y

solveTowers(1l,A,B,C)

4
solveTowers(1,A,C,B)

Y

|

v

solveTowers(1l,C,A,B)

solveTowers(1l,B,C,A)

solveTowers(1,C,B,A)

Y

10

solveTowers(1,A,B,C)

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME

e o College of‘EnginccriEgl
Box trace of solveTowers (3,

The initial call 1 is made, and solveTowers begins execution:

count
source
dest
spare

0OwP w

\A/,

ELRR.T. W
atie] College of Engineering

Box trace of solveTowers (3, ‘A’, ’,

At point Y, recursive call 4 is made, and the new invocation of the method begins execution:

count 3 count 2 count 1
source = A X source = A Y source = A
dest = B dest =C dest =C
spare = C spare = B spare = B

LJA T M K W
atie] Colicge of Engineering

Box trace of solveTowers (3, ‘A’, ’,

This invocation completes, the return is made, and the method continues execution.

P S AT R e 1
count = 3 I count 2 I I count 1 |
source = A | source = A | | source = B
dest =B | dest = C| | dest = C|
spare = C | spare = B | | spare = A

P L P 1 L P 1

LA T M L e —
2oe] College of Engineering .

Box trace of solveTowers (3, ‘A’, ‘'B’, 'C’)

At point X, recursive call 8 is made, and the new invocation of the method begins execution:

count = 3 count = 2 count 1
source = A Z source = C X source = C
dest =B dest = B dest = A
spare = C spare = A spare = B

Thicic the hace case <o a disk i moved the retirn is made and the method continues execution

[JAT M E

2l College of Enginccﬁﬁg

count = 3 count = 2 count 1
source = A Z source = C VA source = A
dest B dest =B dest =B
spare = C spare = A spare = C

-) 1 & wr
AT M E ' YA\
—_— -
RLGASTLAR S ! \ 2 ;

atiie] College of Engineering

"""" Cost of Hanoi Towers
® How many moves Is necessary to solve Hanoi Towers
problem for N disks?
emoves(l) =1
® moves(N) = moves(N-1) + moves(1) + moves(N-1)
®l.e.
moves(N) = 2*mowves(N-1) + 1

® Guess solution and show it’s correct with Mathematical
Induction!

Department of Computer Science & Engineering. ATMECE, Myvsuru

T N B
I\/} B
A ALY A A J

w— Collcgc of Engineering

Ackerman'’s functlo =

® In computability theory, theAckermann function, named
after Wilhelm Ackermann, is one of the simplest and
earliest-discovered examples of a total computable function that
IS not primitive recursive.All primitive recursive functions are
total and computable, but theAckermann function illustrates
that not all total computable functions are primitive recursive.

@ It’sa function with two arguments each of which can be
assigned any non-negative integer.

Department of Computer Science & Engineering. ATMECE, Myvsuru

n+1 if m=0

A(m-1,1) fm>0andn=0
A(m,n) =

A(m-1,A(m,n-1)) fm>0andn>0

where m and n are non-negative integers

Department of Computer Science & Engineering, ATMECE, Mysuru

Ackermann(m, n)

{next and goal are arrays indexed from @ to m, initialized so that next[O
through next[m] are @, goal[0] through goal[m - 1] are 1, and goal[m] is
repeat
value <-- next[0] + 1
transferring <-- true
current <-- 0
while transferring do begin
if next[current] = goal[current] then goal[current] <-- value
else transferring <-- false
next[current] <-- next[current]+l
current <-- current + 1
end while
until next[m] = n + 1
return value {the value of A(m, n)}

end Ackermann

Department of Computer Science & Engineering, ATMECE, Mysuru

Thank you

Department of Computer Science & Engineering, ATMECE, Mysuru

MODULE 3
Linked Lists

" e) College of Engineering

LISt Overview
. Linked lists

- Abstract data type (ADT)

. Basic operations of linked lists
> Insert, find, delete, print, etc.

. Variations of linked lists

o Circular linked lists
> Doubly linked lists

Department of Computer Science & Engineering, ATMECE, Mysuru

m(AT M E — |

= [leet tists
Head
. A is a series of connected

. Each node contains at least

- A piece of data (any type)

> Pointer to the next node in the list
. . pointer to the first node
. The last node points to NULL | node

__.->

data pointer

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME
Sinpte:Linke

IST

. We use two classes: and

. Declare Node class for the nodes

> data: double-type data in this example
> next: a pointer to the next node in the list

class Node {
public:

double data; // data
Node* next; // pointer to next

Y

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME
Sinpte:Linke

. Declare List, which contains

> head: a pointer to the first node in the list.
Since the list is empty initially, head is set to NULL
- Operations on List

IST Cla

class List {

public:
List (void) { head = NULL; } // constructor
~List (void) ; // destructor
bool IsEmpty () { return head == NULL; }

Node* InsertNode (int index, double x);
int FindNode (double x);
int DeleteNode (double x);
void DisplayList (void) ;
private:
Node* head;

Y

Department of Computer Science & Engineering, ATMECE, Mysuru

. Operations of List

> IsEmpty: determine whether or not the list is empty
InsertNode: insert a new node at a particular
position

FindNode: find a node with a given value
DeleteNode: delete a node with a given value
DisplayList: print all the nodes in the list

(0]

(0]

o

(0]

Department of Computer Science & Engineering, ATMECE, Mysuru

) T M E - —

- Node* InsertNode (int i1ndex, double Xx)

- Insert a node with data equal to x after the index’th

elements. (i.e., when index = 0, insert the node as the first element;
when index = 1, insert the node after the first element, and so on)
- |f the insertion is successful, return the inserted node.

Otherwise, return NULL.
(If index is < 0 or > length of the list, the insertion will fail.)

. Steps
1. Locate index’th element
2. Allocate memory for the new node
3. Point the new node to its successor *
4. Point the new node’s predecessor to the new nod

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME
4% °rﬂgn°g’ga new node

. Possible cases of InsertNode
1. Insertinto an empty list
2. Insertin front
3. Insert at back
4. Insert in middle
. But, in fact, only need to handle two cases
> |Insert as the first node (Case 1 and Case 2)
> Insert in the middle or at the end of the list (Case 3
and Case 4)

Department of Computer Science & Engineering, ATMECE, Mysuru

Node* List::InsertNode (int index, double x) { g TTytc»kncaIe

it (index < U) return NULL; index’th node. If it
int currIndex = 1; doesn,teXiSt’
Node* currNode = head; return NULL.
while (currNode && index > currlIndex) {
currNode = currNode->next;
currlIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = X;
if (index == 0) {
newNode->next = head;
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;

}

return newNode;

Department of Computer Science & Engineering, ATMECE, Mysuru

i
(.

%rc 10
Node* List::InsertNode (int index, double x) {
if (index < 0) return NULL;
int currIndex = 1;
Node* currNode = head;
while (currNode && index > currlIndex) {
currNode = currNode->next;
currlIndex++;
}
if (index > 0 && currNode == NULL) return NULL;
Node* newNode = new Node;
newNode->data = X;
1T (Index == 0) o \
newNode->next = head; "'
head = newNode;
}
else {
newNode->next = currNode->next;
currNode->next = newNode;

}

return newNode;

Department of Computer Science & Engineering, ATMECE, Mysuru

Node* List::InsertNode (int index, double x) {
if (index < 0) return NULL;

currNode->next;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {
currNode =
currlIndex++;

}

if (index > 0 && currNode ==

Node* newNode = new

newNode->data = X;

1f (1ndex == 0U) {
newNode->next =
head =

}

else {

newNode—->next =
currNode—->next =

}

return newNode;

NULL) return NULL;

Node;

head;
newNode;

currNode—->next;
newNode;

Department of Computer Science & Engineering, ATMECE, Mysuru

head

/ Insert as first element

newNode

Node* List::InsertNode (int index,

double x) {
if (index < 0) return NULL;

currNode->next;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {
currNode =
currIndex++;

}

if (index > 0 && currNode ==

Node* newNode = new

newNode->data = X;

if (index == 0) {
newNode->next =
head =

}

else {

newNode->next =
currNode—->next =

}

return newNode;

NULL) return NULL;

Node;

head;

newNode/; Insert after currNode

currNode->next;
newNode;

Department of Computer Science & Engineering, ATMECE, Mysuru

currNode

JA T M E
Naletiniepe: noae

. 1nt FindNode (double x)
- Search for a node with the value equal to x in the list.

> If such a node is found, return its position. Otherwise,
return O.

int List::FindNode (double x) {

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data != x) {
currNode = currNode->next;

currIndex++;

}
if (currNode) return currIndex;
return 0;

Department of Computer Science & Engineering, ATMECE, Mysuru

int DeleteNode (double x)
- Delete a node with the value equal to x from the list.

- If such a node is found, return its position. Otherwise,
return O.

. Steps
> Find the desirable node (similar to FindNode)

- Release the memory occupied by the found node

- Set the pointer of the predecessor of the found node to
the successor of the found node

. Like InsertNode, there are two special cases
o Delete first node
o Delete the node in middle or at the end of the list

Department of Computer Science & Engineering, ATMECE, Mysuru

in

List::DeleteNode (double x) {
Node* prevNode = NULL;

Node* currNode = head; its value equ al to x
int currIndex = 1;
while (currNode && currNode->data != x) {

prevNode = currNode;

currNode =

currNode->next;
currIndex++;

}
1if (currNode) {
if (prevNode) {
prevNode->next =

currNode->next;
delete currNode;

}

else {
head =

currNode—->next;
delete currNode;

}

return currlIndex;
}

return 0;

Department of Computer Science & Engineering, ATMECE, Mysuru

2 [btihd, N—

int List::DeleteNode (double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data !'= x) {
prevNode = currNode;
currNode = currNode->next;
currlndex++;

prevNode currNode
}

if (currNode) ({ -

1T (prevNode) {

prevNode->next = currNode->next;
delete currNode;
}
else {
head = currNode->next;
delete currNode;

}
return currlndex;

}

return 0;

Department of Computer Science & Engineering, ATMECE, Mysuru

int List::DeleteNode (double x) {

Node* prevNode = NULL;

Node* currNode = head;

int currIndex = 1;

while (currNode && currNode->data !'= x) {
prevNode = currNode;
currNode = currNode->next;

currlndex++;

}

if (currNode) {
if (prevNode) {

prevNode->next = currNode->next;
delete currNode;

}

else |

head = currNode->next;
delete currNode;

}

return currlndex;

} head currNode

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E
Mtibrga

the elements &= BE

- vold DisplaylList (void)
> Print the data of all the elements
> Print the number of the nodes in the list

void List::DisplaylList()
{

int num = 0;
Node* currNode = head;
while (currNode != NULL) {
cout << currNode->data << endl;
currNode = currNode->next;
num++;
}
cout << "Number of nodes in the list: " << num << endl;

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M
destroyin gFt e

. ~List (void)

- Use the destructor to release all the memory used by the
list.

> Step through the list and delete each node one by one.

List::~List (void) {
Node* currNode = head, *nextNode = NULL;
while (currNode != NULL)
{
nextNode = currNode->next;
// destroy the current node
delete currNode;

currNode = nextNode;

Department of Computer Science & Engineering, ATMECE, Mysuru

result

" !
U S I n g Ll \,."Z‘.‘, Number of nodes in the list: 3

5.0 found
4.5 not found

6

int main (void) 5

{

List

list.
list.

list.
list.

list.

Number of nodes in the list: 2

list;

InsertNode (0,

InsertNode (1, ;

InsertNode (-1, 5.0); // unsu
InsertNode (0, 6.0); // successful
InsertNode (8, 4.0); // unsuccessful

// print all the elements
list.DisplayList ()
if(list.FindNode (5.0) > 0) cout << "5.0 found" << endl;

else

cout << "5.0 not found" << endl;

if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl;

else

list.
.DisplayList (),
tarn O;

list

cout << "4.5 not found" << endl;
DeleteNode (7.0) ;

AT M E
‘tTratEoTs of Linked Lis

=

,
%CS% =

- ¢ o ¥

. Circular linked lists
- The last node points to the first node of the list

EIE D=0

Head
- How do we know when we have finished

traversing the list? (Tip: check if the pointer of
the current node is equal to the head.)

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME

g
A Fatrons 0| EI‘IE 3 EISt

Doubly linked lists
- Each node points to not only successor but the
predecessor

> There are two NULL: at the first and last nodes in
the list

- Advantage: given a node, it is easy to visit its

redecessor. Convenlent to traverse lists
ackwards

-~

Department of Computer Science & Engineering, ATMECE, Mysuru

E) ' RLGISTIAR Y
U S EI n |! e a | i

. Linked lists are more complex to code and
manage than arrays, but they have some distinct
advantages.

0 . a linked list can easily grow and shrink in size.
- We don’t need to know how many nodes will be in the list.
They are created in memory as needed.

 In contrast, the size of a C++ array is fixed at compilation
time.

- To insert or delete an element in an array, we need to copy
to temporary variables to make room for new elements or
close the gap caused by deleted elements.

- With a linked list, no need to move other nodes. Only need
to reset some pointers.

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E o
Has'ertion: W ey N -
017‘ -|—> 0144‘-|—> o//

. Follow the previous steps and we get

ehead 04

eStep 1 e Step 2

(1} [=[-

e Step 3

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME A e
msertiornDescription s B o

nsertion at the top of the list
nsertion at the end of the list
nsertion in the middle of the list

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E
Csllecrﬁ@ﬁg at t e eén

Steps:

. Create a Node

. Set the node data Values
. Connect the pointers

Department of Computer Science & Engineering, ATMECE, Mysuru

A1 M E
== S'ertion: W —f o IRy
17| 1| e 1434+ o//

. Follow the previous steps and we get

ehead 04

eStep 1 e Step 2

(1} [=[-

e Step 3

head —-I?FI—»W 142 93 -|—>II

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E = A
msertiorr:Description =ERS%

nsertion at the top of the list
nsertion at the end of the list
nsertion in the middle of the list

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME
ASETtion®in the middle ==

Steps:

. Create a Node

. Set the node data Values
. Break pointer connection
. Re-connect the pointers

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E

A Sertion: I5e scription s B o

head —-| 48‘-|—>‘ 17 ‘-|—>‘ 142‘-|—>II

eStep 1 o Step 2
- (=1

o Step

head —-| 43H—>‘ 17 H—»II ‘142H—»II

oeStep 4

nead —| 48[17 [s

Department of Computer Science & Engineering, ATMECE, Mysuru

A 1 M L
altgi: P gcerine

. Introduction

- Insertion Description

. Deletion Description

Basic Node Implementation
Conclusion

Department of Computer Science & Engineering, ATMECE, Mysuru

BeletigmDescription

. Deleting from the top of the list
. Deleting from the end of the list
. Deleting from the middle of the list

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E o o
BetetignDescription == B

. Deleting from the top of the list
. Deleting from the end of the list
. Deleting from the middle of the list

Department of Computer Science & Engineering, ATMECE, Mysuru

' M 1 B
@!lcetfrﬁrg! f rom tHe top

Steps

. Break the pointer connection
. Re-connect the nodes

. Delete the node

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E =1
BeletiorrDescription oty B

ehea

o4

6 [1— 042 |4

|.

17| 1+

ehead

.head\\\‘

o4

42|+

|.
-

17| 1+
042 [+

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E o o
BetetignDescription == B

. Deleting from the top of the list
. Deleting from the end of the list
. Deleting from the middle of the list

Department of Computer Science & Engineering, ATMECE, Mysuru

[M E 1 7 B
éllceffrﬂng, from tHe e na

Steps

. Break the pointer connection

. Set previous node pointer to NULL
. Delete the node

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E 2 Kl 5o
s=eletionDescription

ehea
0
®

o4 ol7/

| e42 |1+

|.

|.

TP B
\|-6H~ R

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E o o
BetetignDescription == B

. Deleting from the top of the list
. Deleting from the end of the list
. Deleting from the middle of the list

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM
Betetirgfrom e Voo o

Steps

. Set previous Node pointer to next node
. Break Node pointer connection

. Delete the node

Department of Computer Science & Engineering, ATMECE, Mysuru

ATME
ohead\

T

ohead\ F\

o4 \‘

042 [+

ehead - ‘ -l_H
N

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M
?it‘EN’ﬁfle \mp'ementatl

The following code is written in C++:

Struct Node

{
int data; //any type of data could be another
struct
Node *next; //this is an important piece of code
“pointer”

Department of Computer Science & Engineering, ATMECE, Mysuru

Threaded Binary Tree

aliie] College of Engineering

"""" Threaded Binary Tree

.In a linked representation of a binary
tree, the number of null links (null
pointers) are actually more than
non-null pointers.

. Consider the fol binary tree:
./LW

AR &5

A Bmary tree with the null pomters
Department of Computer Science & Engineering, ATMECE, Mysuru

"F -), / [} S P
JA T M E s [~ B (0
UKAS : :

Threaded Binary Tree

. In above binary tree, there are 7 null pointers
& actual 5 pointers.
. In all there are 12 pointers.

- We can generalize it that for any binary tree
with n nodes there will be (n+1) null pointers
and 2n total pointers.

. The objective here to make effective use of
these null pointers.

-A. J. perils & C. Thornton jointly proposed idea
to make effective use of these null pointers.

. According to this idea we are going to replace

|| the null pointers by the appropriate pointer

1) lled threads.

&M

Threaded Binary Tree

. And binary tree with such pointers are called
threaded tree.

n the memory representation of a threaded
pinary tree, it is necessary to distinguish
petween a normal pointer and a thread.

Threaded Binary Tree

- Therefore we have an alternate node
representation for a threaded binary tree
which contains five fields as show bellow:

lthread lcluld data rchild rtleead
—_— -
left right
threaded tag threaded tag

For any node p, m a tlhreaded bmary tree.

Ithred(p)=1 mdicates Icluld (p) 15 a thread pomter
Ithred(p)=0 mdicates lclald (p) 15 a normal
rthred(p)=1 mdicates rchald (p) 15 a thread
rthred(p)=0 mdicates rcluld (p) 15 a normal pomter

S
=
3
-
AJA *
| A N
"

GASTRARS

AT M E
tEadetd Binary Tree

. Also one may choose a one-way threading or a
two-way threading.

. Here, our threading will correspond to the in
order traversal of T.

Department of Computer Science & Engineering, ATMECE, Mysuru

Threaded Binary Tree
One-Way

. Accordingly, in the one way threading of T, a
thread will appear in the right field of a node

and will point to the next node in the in-order
traversal of T.

. See the bellow example of one-way in-order
threading.

Threaded Binary Tree:
One-Way

A
B F\

AN VAT

//
F]
Inorder of bellow tree is: D,B,FE,A,G,C,L,J,H K //‘

L

One-way morder threading

Threaded Binary Tree
Two-Way

. In the two-way threading of T.

. A thread will also appear in the left field of a
node and will point to the preceding node in
the in-order traversal of tree T.

. Furthermore, the left pointer of the first node
and the right pointer of the last node (in the

in-order traversal of T) will contain the null
value when T does not have a header node.

Threaded Binary Tree

. Bellow figure show two-way in-order
threading.

. Here, right pointer=next node of in-order
traversal and left pointer=previous node of

in-order traversal
. Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

Threaded Binary Tree

A

aaaaaaaaaaaaaaa

Threaded Binary Tree

Two-way Threading with Header node

. Again two-way threading has left pointer of
the first node and right pointer of the last
node (in the inorder traversal of T) will
contain the null value when T will point to
the header nodes is called two-way threading
with header node threaded binary tree.

. Bellow figure to explain two-way threading with
header node.

AN

Threaded Binary Tree

. Bellow example of link

representation of threading binary
. fneerder traversal of bellow tree:
G,F,B,A,D,C,E

Threaded Binary Tree

NULL

Threaded Binary Tree

. Advantages of threaded binary
trg&\seade binary trees have numerous
vantages over non-threaded binary trees
listed as below:

- The traversal operation is more faster than that of its
unthreaded version, because with threaded binary tree
non-recursive implementation is possible which can

run faster and does not require the botheration of
stack management.

Threaded Binary Tree

- Thel vanbagesahdhreaced diararyed with a

t@r aded binary tree, we can efficiently determine the
ecessor and successor nodes starting from any

node. In case of unthreaded binary tree, however,
this task is more time consuming and difficult. For
this case a stack is required to provide upward
pointing information in the tree whereas in a
threaded binary tree, without having to include the
overhead of using a stack mechanism the same can
be carried out with the threads.

Threaded Binary Tree

- Mg vedegdas adcthyiedech ngaryer node.

tﬂ'é]éeads are usually more to upward whereas links
are-downward. Thus in a threaded tree, one can move
in their direction and nodes are in fact circularly
linked. This is not possible in unthreaded counter
part because there we can move only in downward
direction starting from root.

> Insertion into and deletions from a threaded tree are
although time consuming operations but these are

very easy to implement.

Threaded Binary Tree

° Insertion and deletion from a threaded tree are very time consuming operation

crpisauvatitagesof threaded binary

° This tree require a

thiqagx@Iink.

itio to identify t

TREES

AL ML |
ege of En mccrm
hat'is a binary tree?

each node can have up to two

1l
\

successor nodes ()
- The predecessor node of a node is called its
- The "beginning” node is called the (no parent)

- A node without children is called a

E\ < 0

A Level 0

H—R _ Level 2

Owner
Jak

ROOT NODE
Manager
Brad
|
Waitress aiter
Joyce nris

Chef
Carol
Cook Helpe
Max Len

Department of Computer Science & Engineering, ATMECE, Mysuru

°e,c TO\
Owner
Jak
Manager Chef
Brad Carol
Waitress Waiter Cook Helper
Cpris Max Len

Joyce

LEAF NODES

Department of Computer Science & Engineering, ATMECE, Mysuru

JA T M E
W Hat is-a

. a unique path exists from the
root to every other node

notTree | &

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E
etTeyMmino ()gy —

. Ancestor of a node: any node on the path from
the root to that node

. Descendant of a node: any node on a path from
the node to the last node in the path

. Level (depth) of a node: number of edges in the
path from the root to that node

. Height of a tree: number of levels (
some books define it as #levels - 1)

B/A\C
/N

AN

r i e
m AT ML — R ()

2tuie College of Enginccnﬁ\

Tree Has Levels

LEVELO Owner
Jak
Manager Chef
Brad Carol
| |
Waitress Waiter Cook Halper
Joyce Chris Max Len

Department of Computer Science & Engineering, ATMECE, Mysuru

LEVEL1

E

L_evel One

N ,\T.\],_.

P
;

(3

¥

£

Owner
Jak
/ Manager Chef
A\ Brad Carol
Waitress Waiter Cook Halper
Chris Max Len

Joyce

Department of Computer Science & Engineering, ATMECE, Mysuru

| evel Two

Owner
Jak
Manager Chef
Brad Carol
LEVEL2 A+ |
\Waitress Waiter Cook Helper
Joyce Chris Max Len

\

Department of Computer Science & Engineering, ATMECE, Mysuru

s "}?‘i

(3

b

N ,\T.\],_.

|

2t College of EngiAn»CCFing
A Subtree

Owner
Jak
Manager Chef
Brad Carol
|
Cook Helper
Max Len

Waitress
Joyce

LEFT SUBTREE OFROOT NODE

Department of Computer Science & Engineering, ATMECE, Mysuru

Owner

Waitress
Joyce

Jak
Manager
Brad
|
Waiter
Chris

RIGHT SUBTREE
OFROOT NODE

Department of Computer Science & Engineering, ATMECE, Mysuru

with height h?

Department of Computer Science & Engineering, ATMECE, Mysuru

WHaL, L) o —

with N nodes?

. The
(sam

- The pmin height of a tree with N nodes is
log(N+1)

is \V

Department of Computer Science & Engineering, ATMECE, Mysuru

A

Co (a) A 4-level tree (b) A 5-level tree (c) A 10-level tree

By ~B.go B
N 2 \

A e e P
/\ / \ >

/ / :

Department of Computer Science & Engineering, ATMECE, Mysuru

T M =l B
5 %rcfhgm’g Inary tree =E8

(1) Start at the root

(2) Search the tree level by level, until you
find the element you are searching for

(O(N) time in worst case)

Is this better than searching a linked list?

Department of Computer Science & Engineering, ATMECE, Mysuru

‘H‘a r‘vg'S @arch 1rees == B8

. Binary Search Tree Property: The value stored

at a node is than the value stored at
its left child and than the value stored at
its right child

. Thus, the value stored at the root of a subtree

iS than any value in its left subtree
and than any value in its right subtree!!

Department of Computer Science & Engineering, ATMECE, Mysuru

1.

[\ | |V

-
—
)

College of En tree | &0

A (T I
f N [-
ot L

E (Root node)

A D I \
\
\
\
\ \ \ \ \
\\ }
\ B N |
: (Right :
N (Left & /
i tree i
\\\subtree),/ ‘\fl\lb) //
All values in the All values in the
left subtree are right subtree are
less than the value greater than the value
in the root node. in the root node.

Department of Computer Science & Engineering, ATMECE, Mysuru

' %rcfhg‘l"n"g Inary search

(1) Start at the root

(2)Compare the value of the item you are
searching for with the value stored at the
root

(3)If the values are equal, then item found.
otherwise, if it is a leaf node, then not found

Department of Computer Science & Engineering, ATMECE, Mysuru

(4) If it is less than the value stored at the
root, then search the left subtree

(5)If it is greater than the value stored at
the root, then search the right subtree

(6)Repeat steps 2-6 for the root of the
subtree chosen in the previous step 4 or 5

Is this better than searching a linked list?

Department of Computer Science & Engineering, ATMECE, Mysuru

Tree node structure

Node
Right(Node)

) Info(Node) \

template<class ltemType>

struct TreeNode {
ItemType info;
TreeNode* left;
TreeNode* right; };

#include <fstream.h>

template<class ltemType>
struct TreeNode,;

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDER},

template<class ItemType>

class TreeType {
ublic:
reeType();
~TreeType();
TreeType(const TreeType<ltemType>&);
void operator=(const TreeType<ItemType>&);

void MakeEmpty();
bool IsEmpty(S)const;

bool IsFull() const;
int NumberOfNodes() const;

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E
1S earc ree SpecCise

void Retrieveltem(ltemTypeé&, bool& found);

void Insertitem(ltemType);

void Deleteltem(ltemType);

void ResetTree(OrderType);

void GetNextltem(ltemType&, OrderType, bool&);
void PrintTree(ofstream&) const;

private:
TreeNode<ItemType>* root;

I3

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E ~ §)
sl | TECtTOTENUMDber Odes= &4

. Recursive implementation

#nodes in a treg =

#nedes in left subtree + #nedes in Hight

sybtree ¥ 1
. What is the size factor?

Number of nodes in the tree we are examining
. What is the base case?
The tree is empty

. What is the general case?

CountNodes(Left(tree)) + CountNodes(Right(tree))
+ 1

Department of Computer Science & Engineering, ATMECE, Mysuru

E AT f\/.”! .E W
s=fTietforNumberOfNodes (&8

template<class ItemType>
int TreeType<ItemType>:: () const

return CountNodes(root);

}

template<class ItemType>
Int (TreeNode<ItemType>* tree)

{
If (tree == NULL)

return O;
else

return CountNodes(tree->left) + CountNodes(tree->right) + 1;

}

Department of Computer Science & Engineering, ATMECE, Mysuru

College of Engineering
Let’s consider the first few steps:

Count({left E) + Count{right E) + 1

ret 2
H c C‘ /) \
ount(left C) + Cou%

<—* ret 0 / <_.. -
@ oo o Count(left A) + Count(right A) + 1

ret 0 B retd
® @©

Count({left B) + Count(right B) + 1

Department of Computer Science & Engineering, ATMECE, Mysuru

Function Retrieveltem

Compare 18 with 17: Compare 18 with 20: Compare 18 with 18:
Choose right subtree Choose left subtree Found !

17 ourent free

What is the size of the problem?
Number of nodes in the tree we are examining

What is the base case(s)?
1) When the key is found
2) The tree is empty (key was not found)

What is the general case?
Search in the left or right subtrees

Department of Computer Science & Engineering, ATMECE, Mysuru

template <class IltemType>

void TreeType<ltemType>:: (ItemType& item,bool& found)
{
Retrieve(root, item, found);

}

template<class ltemType>
void (TreeNode<ItemType>* tree,ltemType& item,bool& found)
{
if (tree == NULL)
found = false;
else if(item < tree->info)
Retrieve(tree->left, item, found);
else if(item > tree->info)
Retrieve(tree->right, item, found);

else {
item = tree->info;
found = true;

}

}

Department of Computer Science & Engineering, ATMECE, Mysuru

2lie) College of Engineerit(a) tree ‘ !} -

Function o o
treeB—' 5 tree|3—> 5 treela—> 5

Insertitem h* e

Vv
7
e Use the (&) et (f) Insert 8 (g) Insert 12
oinary HECA SR EoA
3 9 3 9 3 9
search tree) ! 2
7 7 7 12
property to § 3
insert the § B
new item at mumsers (i) Insert 4 (j) Tnsert 20
the correct w[d s o wee [l —
lace s LN P
3 9 3 9 3 9
P et e 2N \ 2
7 12 4 7 12 4 04 12
Y\ 2N 7N DS
6 8 6 8 6 8 20

Department of Computer Science & Engineering, ATMECE, Mysuru

r ~W"'
JA T M E A7)
v l ulll J(peo | 2¢e 0 ”dllj ;1] cer g (a) The initial call tree :-'o\‘g

7
/ 3 / \ 15 \
y
2 10 20
° (b) The first recursive call tree | &
\
15
Y
10 \ 20
(c) The second recursive call tree | o

(d) The base case tree | o

Department of Computer Science & Engineering, ATMECE, Mysuru

atiie] College of Engineering

Function Insertltem (cont.)

. What is the of the problem?
Number of nodes in the tree we are examining

- What is the ?
The tree is empty
- What is the ?

Choose the left or right subtree

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E
krrctioreinsertitem !cont_)

template<class ltemType>

void TreeType<ItemType>:. (ItemType item)
Insert(root, item);

}

template<class ltemType> _
void (TreeNode<ItemType>*& tree, ItemType item)

{
If(tree == NULL) {
tree = new TreeNode<IltemType>;
tree->right = NULL:
tree->left = NULL;
tree->info = item;

else if(item < tree->info)
Insert(tree->left, item);
else

Insert(tree->right, item);

}

Department of Computer Science & Engineering, ATMECE, Mysuru

Function Insertltem
(cont.)

(a) The initial call tree (a) The last call to Insert

Insert(tree->right.,item};

(b) The first recursive call tree B\

15
/N
0

1

(¢) The second recursive call tree B\
10
(d) The base case tree S A
by new operator

20

. Yes, certain orders produce very unbalanced
trees!!

. Unbalanced trees are not desirable because
search time increases!!

. There are advanced tree structures (e.g., red-
black trees”) which guarantee balanced trees

Department of Computer Science & Engineering, ATMECE, Mysuru

Does the
order of

Inserting
elements

INtO a tree
matter?
(cont.)

(@ InputD B F ACEG

(¢)Input:A B C D E F G

re v - P Qree vy,
m|_A T M T — ()
; ot st G e ((

2 1) College of Engineering

unction Deleteltem

. First, find the item; then, delete it

. Important: binary search tree property
must be preserved!!

. We need to consider three different cases:
(1) Deleting a leaf
(2) Deleting a node with only one child
(3) Deleting a node with two children

Department of Computer Science & Engineering, ATMECE, Mysuru

. s
(1) Deleting a leaf

treeB\]
B/ \Q
/ \

.

Z

T
(2) Deleting a node with
only one child

Delete the node containing

(3) Deleting a node with tv
children

m| AT ML e—— > ()

o] College of Engineering

(3) Deleting a node Wlthtwo
children (cont.)

. Find predecessor (it is the rightmost node
in the left subtree)

. Replace the data of the node to be deleted
with predecessor's data

. Delete predecessor node

Department of Computer Science & Engineering, ATMECE, Mysuru

.. Collcgc of Engmccnng

Functlon Deleteltem (cont)

- What is the of the problem?
Number of nodes in the tree we are examining

- What is the ?
Key to be deleted was found
- What is the ?

Choose the left or right subtree

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E
= UNCHON Deleteltem (COorR

template<class ltemType>
void TreeType<ItmeType>:: (ItemType item)
{

Delete(root, item);

}

template<class ltemType>
void (TreeNode<IltemType>*& tree, ltemType item)

{

if(item < tree->info)
Delete(tree->left, item);
else if(item > tree->info)
Delete(tree->right, item);

else
DeleteNode(tree);

}

Department of Computer Science & Engineering, ATMECE, Mysuru

template <class ItemType>

void (TreeNode<ItemType>*& tree)

{
ltemType data;

TreeNode<IltemType>* tempPtr; H\

tempPtr = tree; 7N
If(tree->left == NULL) { P ol

tree = tree->right; T =
delete tempPtr; < !

} .
else if(tree->right == NULL) { Z
tree = tree->left; |
delete tempPtr; [

else { e W
GetPredecessor(tree->left, data); : JO.
tree->info = data; " N @
Delete(tree->left, data); T e e

} M P

Department of Computer Science & Engineering, ATMECE, Mysuru

JA T M E
UtrctrorrDeleteltem (congs

template<class ltemType>
void (TreeNode<ItemType>* tree, temType& data)
{
while(tree->right '= NULL)
tree = tree->right;
data = tree->info;

}

Department of Computer Science & Engineering, ATMECE, Mysuru

"] College of Engineering

Tree Traversals

There are mainly three ways to traverse a
tree:

norder Traversal
Postorder Traversal
Preorder Traversal

Department of Computer Science & Engineering, ATMECE, Mysuru

ordef Tfaversal: 2 &

tree
6E9/
N
]

=

Visit left subtree first

Department of Computer Science & Engineering, ATMECE, Mysuru

m|LA T M E ——

g Col

atme alglnccnr-!-l- raversa I

- Visit the nodes in the left subtree, then
visit the root of the tree, then visit the
nodes in the right subtree

(tree)

If tree is not NULL
Inorder(Left(tree))
Visit Info(tree)
Inorder(Right(tree))

(Warning:

Department of Computer Science & Engineering, ATMECE, Mysuru

; ’~1" College of Engineering

Visit left subtree first

Department of Computer Science & Engineering, ATMECE, Mysuru

i‘\: e RLGASTILAR Y
' LT

ollcgc of Engm

ost or°c1er Traversal

- Visit the nodes in the left subtree first,

then visit the nodes in the right subtree,
then visit the root of the tree

(tree)
If tree 1s not NULL

Postorder(Left(tree))
Postorder(Right(tree))
Visit Info(tree)

Department of Computer Science & Engineering, ATMECE, Mysuru

tree

/ °
.
|

Visit left subtree second

Department of Computer Science & Engineering, ATMECE, Mysuru

/—\ T T\/{ [~ :

i) .). : L“J _ A-- = 3}
1 (=

ALl S N\

ollege of Engigeering

reorder Traversal

. Visit the root of the tree first, then visit the

nodes in the left subtree, then visit the
nodes in the right subtree

(tree)
If tree is not NULL
Visit Info(tree)

Preorder(Left(tree))
Preorder(Right(tree))

Department of Computer Science & Engineering, ATMECE, Mysuru

Tree
Traversal
S

Inorder:
Preorder:
Postorder:

AT M T o—)
=function PrintTree -

- We use "inorder” to print out the node values

. \WHiePD (keys are printed out in
agélg}{'(ﬁﬁ@binary search trees for sorting !!

Department of Computer Science & Engineering, ATMECE, Mysuru

- °“i“f€ff‘Ft‘fﬁgPr|ntTree (cont.) ==E=S ‘

AJA

void TreeType:: (ofstream& outFile)

{

Print(root, outFile);

}

template<class ltemType>

void (TreeNode<ItemType>* tree, ofstream& outFile)
{

If(tree 1= NULL) {
Print(tree->left, outFile);
outFile << tree->info;
Print(tree->right, outFile);

}
}

(see textbook for overloading <<
and >>)

Department of Computer Science & Engineering, ATMECE, Mysuru

ml(JA T M E

2o College of Engineering

Class Constructor

template<class IltemType>

TreeType<ltemType>:: 0
{

root = NULL,;

}

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E o— W ()
Eldss Destructor = B

tree | &

/

£,
N/
/

N\
/N
\

Department of Computer Science & Engineering, ATMECE, Mysuru

AJA

Ié%"”“ﬁ““étructor (cont’d) =

. Delete the tree in a "bottom-up"” fashion
. ﬁostorder traversal is appropriate for this

;I'reeType:: 0
}Destroy(root);
void (TreeNode<ItemType>*& tree)

if(tree = NULL) {
estroy(tree->left);
Destroy(tree->right);
delete tree;

}
}

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E o > W ()
=Gy " Eonstructor oy B o

tree | &

/

N
NS
/

\
PN
\

Department of Computer Science & Engineering, ATMECE, Mysuru

[]A T r\z E
=l cOoPyEEe STructor (Con

template<class ltemType>

TreeType<itemType>:; (const TreeType<ltemType>&
originalTree)

CopyTree(root, originalTree.root);
}

VOiPreeNode<Itgnr1er§/l|B|8> II;I%I YP 3 cony,

if(originaITree = NULL)
copy = NULL,;
else ?/

copy = new TreeNode<ItemType>;

copy->info = originalTree->info;
CopyTreeEcopy >|eft, orlglnaITree >|eft);
CopyTree copy—>r|ght originalTree->right);

Department of Computer Science & Engineering, ATMECE, Mysuru

m| A T M E o

aliie] College of Engineering

=i ond GetNext| BT

. The user is allowed to specify the tree
traversal order

. For efficiency, ResetTree stores in a queue
the results of the specified tree traversal

. Then, GetNextItem deaueues the node
values from tf " / N

/N /\
v we /\
o

Department of Computer Science & Engineering, ATMECE, Mysuru

teonty™

PR
R G \be (PRE_ORDER,
'N ORDER,
POST ORDERY}:

template<class ItemType>

class TreeType {
public:

private:
TreeNode<ltemType>* root;
QueType<ltemType> preQue;
QueType<itemType> inQue;
QueType<itemType> postQue;

J§

Department of Computer Science & Engineering, ATMECE, Mysuru

oy &Ollégcrpl E g)nccrmg

template<class ItemType>
void (TreeNode<IltemType>*,

QueType<ltemType>&),

template<class ItemType>
void (TreeNode<ItemType>*,
QueType<itemType>&);

template<class ltemType>

void (TreeNode<IltemType>*,
QueType<itemType>&);

Department of Computer Science & Engineering, ATMECE, Mysuru

setTree

ollege of ngmccnng

cont.)

JEC

template<class ItemType>

void (TreeNode<ItemType>tree,
QueType<itemType>& preQue)

If(tree |= NULL) {
preQue.Enqueue(tree->info);
PreOrder(tree->left, preQue);
PreOrder(tree->right, preQue);

}
}

Department of Computer Science & Engineering, ATMECE, Mysuru

[JAT M E
e SETTrEe and GetNextitem E&

template<class ItemType>

void (TreeNode<ItemType>tree,
QueType<ltemType>& inQue)

If(tree '= NULL) {
InOrder(tree->left, inQue);
INQue.Enqueue(tree->info);

\ InOrder(tree->right, inQue);

}

Department of Computer Science & Engineering, ATMECE, Mysuru

ATM E
e setlrae

(cont.)
template<class ItemType>

void (TreeNode<IltemType>tree,
QueType<ltemType>& postQue)
{
If(tree '= NULL) {

PostOrder(tree->left, postQue);
PostOrder(tree->right, postQue);

postQue.Engqueue(tree->info);

}
}

:. ~M'-".
an EUNEeXTITE M= KN

Department of Computer Science & Engineering, ATMECE, Mysuru

LA L M B
Hyefarret

template<class ItemType>
void TreeType<ltemType>:. (OrderType order)

switch(order) {
case PRE_ORDER: PreOrder(root, preQue);

break;
case IN_ORDER: InOrder(root, inQue);
break;
case POST ORDER: PostOrder(root, postQue);
break;
}
}

Department of Computer Science & Engineering, ATMECE, Mysuru

template<class ltemType>

id TreeType<| Type>:: ltemType& item,
VO TR e ¥R finished) (ltemTyped item

Yfinished = false;
switch(order) {
case PRE_ORDER: preQue.Dequeue(item);

if(preQue.IsEmpty())
finished = true;

break:

case IN_ORDER: inQue.Dequeue(item);

if(inQue.IsEmpty())
finished = true;
break:

case POST_ORDER: postQue.Dequeue(item);

ifgpostQue.lsEm pty())
Inished = true;
break;

Department of Computer Science & Engineering, ATMECE, Mysuru

Ilterative Insertion and
Deletion

. See textbook

Department of Computer Science & Engineering, ATMECE, Mysuru

Big-O Comparison
Binary Array-

earch Tree based List
O(1)

Linked
List
O(1)

O(logN) | O(logN)

O(N)

O(N)

O(N)

P
b3

(3

N ,\T.\],_.

E

Exercises
. 1-3, 8-18, 21, 22, 29-32

Department of Computer Science & Engineering, ATMECE, Mysuru

Definition

G consists of two sets
— a finite, nonempty set of vertices V(G)
— a finite, possible empty set of edges E(G)
— G(VE) represents a graph

An IS one In which the pair of
vertices In a edge Is unordered, (Vo, V1) = (V1,Vo)
A IS one In which each edge Is a

directed pair of vertices, <vo, V1> 1= <vi,vo>

—

f’«_'v:{\ \\ e
AN >~
\\‘.&x\\\\ \\\ 2

S

V(G1)={0,1,2,3} E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}
V(G2)={0,1,2,3,4,5,6} E(G2)={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}
V(G3)={0,1,2} E(G3)={<0,1>,<1,0>,<1,2>}

complete undirected graph: n(n-1)/2 edges
omplete directed graph: n(n-1) edges

= Acomplete grap
maximum number o

— for with n vertices, the maximum
number of edges Is
— for with n vertices, the maximum

number of edges Is
— example: G1 is a complete graph

= If (Vo, V1) IS
— Vo and vi are
— The edge (vo, V1) IS incident on vertices vo and vi
= If <vo, v1i> IS an edge In a directed graph
— Vo IS V1, and V1 IS Vo
— The edge <vo, vi> Is Incident on vo and v

sy OO .., B
T cmlEécQM@u@n@cEPéa o3l
multigraph (p.260) o

(o) (&
/
(2

self edge multigraph:
(a) (b) multiple occurrences

of the same edge

Department of Computer Science & Engineering, ATMECE, Mysuru

| ‘ /5\ rI*- I\/"Z 1{.: | \: o 20 ger" ", X
2Lt Colle ekl AJA NIDERN e &
+ QS’ifrbg“rapH ana PatH

m Asubgraph of G is a graph G’such that V(G’)
IS a subset of V(G) and E(G”) Is a subset of E(G)

= Apath from vertex vy to vertex vq In a graph G,
IS a sequence of vertices, Vp, Vi, Vi, ..., Vi, Vg,
such that (vp, Vi), (Viy, Vi2), ..., (Vin, Vq) are edges
In an undirected graph

= The length of a path 1s the number of edges on
It

Department of Computer Science & Engineering, ATMECE, Mysuru

Figu 6f' subgragp 267 T—
m (A Y B¢
Coll O) Engmcc ° o e Y B : \\,ﬁ

OROIRO

G1 (1) (i) D) (|v)
(a) Some of the subgraph of G,

12538
5

(1) (i) (i) (IV)
(b) Some of the subgraph of G;

Department of Computer Science & Engineering, ATMECE, Mysuru

A
R g
~— -
AJA | IIPESE -

| |JA T M E 3

1
|~4) e is
wer

= Asimple path is a path in which all vertices,
except possibly the first and the last, are distinct

m Acycle Is a simple path in which the first and
the last vertices are the same

= In an undirected graph G, two vertices, voand v
are connected If there Is a path in G from vo to v1

= An undirected graph is connected If, for every
pair of distinct vertices vi, vj, there Is a path
from vito v;

Department of Computer Science & Engineering, ATMECE, Mysuru

j/\rME

s College of Engineering

connected

(0,

(1 \
@§ & ®
G2
tree (acyclic graph)

Department of Computer Science & Engineering, ATMECE, Mysuru

2.2) College of Engineering

Connected Component

= Aconnected component of an undirected graph
IS @ maximal connected subgraph.

m Atree Is a graph that is connected and acyclic.

= Adirected graph is strongly connected if there
IS a directed path from vi to vj and also
from vj to vi

= Astrongly connected component I1s a maximal
subgraph that is strongly connected.

11

Department of Computer Science & Engineering, ATMECE, Mysuru

5

G, (not connected)

Department of Computer Science & Engineering, ATMECE, Mysuru

strongly connectom”bonent
not strongly connected (maximal strongly connected subgraph)

. > \@
6 <§>

G3

Department of Computer Science & Engineering, ATMECE, Mysuru

AT

atnie] College of Engineering

Degree

= The degree of a vertex Is the number of edges
Incident to that vertex

= For directed graph,

— 1
t
—1
t

ne in-degree of a vertex v Is the number of edges
nat have v as the head

ne out-degree of a vertex v Is the number of edges
nat have v as the tail

— 1f di Is the degree of a vertex 1 in a graph G with n
verticegland e edges, the number of edges is

e=(Y> d,)/2

Department of Computer Science & Engineering, ATMECE, Mysuru

L | A ey %) I (1Y

— Collcgﬂ%fdirr@@ccring
3

3(1 2)3
ol
> L 1G22
@ In:1, out: 1
directed graph
In-degree I |
out-degree @ in: 1, out: 2

é In: 1, out: 0
Gs3

Department of Computer Science & Engineering, ATMECE, Mysuru

roet ™ ; e
' M E
| LY 1 J

structure Graph is
objects: a nonempty set of vertices and a set of undirected edges, where each
edge is a pair of vertices
functions: for all graph € Graph, v, v, and v, € \ertices
Graph Create()::=return an empty graph
Graph InsertVertex(graph, v)::=return a graph with v inserted. v has no
Incident edge.
Graph InsertEdge(graph, vi,v2)::=return a graph with new edge
between vi and v2
Graph DeleteVertex(graph, v)::=return a graph in which v and all edges
Incident to it are removed
Graph DeleteEdge(graph, vi, v2)::=return a graph in which the edge (v1, v2)
IS removed
Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE
else return FALSE
List Adjacent(graph,v)::=return a list of all vertices that are adjacentto v

16

Department of Computer Science & Engineering, ATMECE, Mysuru

= Adjacency Matrix
= Adjacency Lists

Department of Computer Science & Engineering, ATMECE, Mysuru

. P . g : r
AT M F i (o,
/A | | / & 2 - -
A R,-, A A Y a AJ — (<
-
” s
UKAS L

s College of Engineering

RLGASTR AR S
FSA) Snaf 20 is
a

Adjacency Matrix

m Let G=(V,E) be a graph with n vertices.

m The adjacency matrix of G Is a two-dimensional
n by n array, say adj_mat

= If the edge (vi, vj) Is In E(G), ad]_mat[i][j]=1
= If there i1s no such edge In E(G), ad]_mat[i][j]=0
= The adjacency matrix for an undirected graph is

symmetric; the adjacency matrix for a digraph
need not be symmetric

18

Department of Computer Science & Engineering, ATMECE, Mysuru

undirected: n2/2
directed: n2

symmetric

01 1
1 00
1 00
011
0 0 0
0 0 0
0 00
00 0

Department of Computer Science & Engineering, ATMECE, Mysuru

O O O o o+ kP O

o O B O O O O O
o r Ok O O O O
H O F O O O o O
O P O OO O oo

|—

A 1T M L |

s College of Engineering

Merits of Adjacency I\/Iatrlx'c

= From the adjacency matrix, to determine the
connection of vertices Is easy

= The degree of a vertex is Zadj mat[i][j]

= For a digraph, the row sum IS the out_degree,
while the column sum is the in_degree

ind(vi) = 3 ALj,i] outd(vi) = > Ali, j]

Department of Computer Science & Engineering, ATMECE, Mysuru

1T NV ; 7, NS
JA y SEi .
Fj“éﬁ %ﬂ‘u ctures for Adjacerey ‘iqsfs
Each row In adjacency matrix is represented as an adjacency list.

#define MAX VERTICES 50
typedef struct node *node pointer;
typedef struct node {

int vertex;

struct node *1link;

};
node pointer graph[MAX VERTICES];
int n=0; /* vertices currently in use *

21

Department of Computer Science & Engineering, ATMECE, Mysuru

L

Vyour

3 B-115-[2

eering, ATMeCL, 3

76 @@

G1

o0
%5
¢ f,&
=)
=
-
S
Q
)
6)
et
=
= B
|y
)
(D)
(U
(@)
s
3
=
m
Y 5
2
(A8

e College oifiailtzenf'e S t | n g p e rat I 0. :-:

ndegree of a vertex in an undirected graph
—4# of nodes in adjacency list

n# 0f edges In a graph
—determined in O(n+e)

mout-degree of a vertex in a directed graph
—# of nodes In its adjacency list

min-degree of a vertex in a directed graph
—traverse the whole data structure

Department of Computer Science & Engineering, ATMECE, Mysuru

| r P d‘,‘nl,
A = .

o <

node[0] ...

node[n-1]: starting point for vertices

node[n]: n+2e+1

node[n+1] ...

node[n+2e]: head node of edge

0] 9 8] 23 16] 2
1] 11 9] 1 4l[17]1 5
2] 13 10] 2 5/[18] 4
3] 15 11] 0 19] 6
4] 17 12] 3 6/[20] 5
5] 18 13] 0 21] 7
6] 20 14] 3 71[22] 6
7] 22 15] 1

Department of Computer Science & Engineering, ATMECE, Mysuru

LA L VL S
seardgire ogh@inknverse adjacency list for G yzm

)

I | o| = r1— |1 | NULL
|

1 | 0 NULL
@

2 |1 NULL

@

Determine in-degree of a vertex in a fast way.

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M E
F | gdude obrnkibeerAd t

tail head | column link for head | row link for talil

Department of Computer Science & Engineering, ATMECE, ivlysuru

NULL | NULL

o
o
=

I |
‘1 21| OlnuLL . 1‘ Z‘NULL‘NULL‘

NULL

H
-~
———

I_
()
o
o

I—

@‘*

27

Department of Computer Science & Engineering, ATMECE, Mysuru

AT M f
. Colle CIQW&&J;W ;

Order is of no significance.

headnodes vertax link

0 | 3| ~——| 1| *— | 2 |NULL
1 e | 2| ~r—| 0| e7—| 3 |NULL
2 o+ | 3| ¢—| 0| - > 1 |NULL
3 e+—| 2| *1—| 1| 71— |0 |NULL
0
1 2

Department of Computer Science & Engineering, ATMECE, Mysuru

aa] College of Engincgng

ome Graph Opera s S

= Traversal
Given G=(\E) and vertex v, find all weV,
such that w connects V.

— Depth First Search (DFS)
preorder tree traversal

— Breadth First Search (BFS)
level order tree traversal

= Connected Components
= Spanning Trees

Department of Computer Science & Engineering, ATMECE, Mysuru

0lICge U ngimnecrin

lists (p. 27g)

depth first search ‘\/O v1 v3, V7,
v4, v5, V2, v6

(b)

breadth first search: vO, v1, v2, v3, v4, v5, v6, v7

Department of Computer Science & Engineering, ATMECE, Mysuru

A re iy
/'_\‘ T "\ ,‘§ T ¥ [\ - = - -
[\ | 1V] &

College of Enginccdng_#d_e_fm S8 UKAS :
#define TRUE 1
short int visited[MAX VERTICES];

void dfs (Int V)
{

node pointer w;
visited[v]= TRUE;
printf (“$54”, v);
for (w=graph[v], w, w=w->link)
i1f ('visited[w->vertex])
dfs (w->vertex) ; Data structure
} adjacency list: O(e)

adjacency matrix: O(n2)
31

Department of Computer Science & Engineering, ATMECE, Mysuru

A1 ME

2Liie] College of Engineering :

Breadth First Search

typedef struct queue *queue pointer;
typedef struct queue {
int vertex;

queue pointer link;
};

void addg(queue pointer *,
queue pointer *, 1int);

int deleteq(queue pointer ¥*);

Department of Computer Science & Engineering, ATMECE, Mysuru

A 1 M E

Lo) College of Engineering

Breadth First Search -
(Continued)
void bfs (int v)
{
node pointer w;
queue pointer front, rear;
front = rear = NULL;
. \o ,r . adjacency list: O(e)
Prlntf(5d”, V) ; adjacency matrix: O(n2)
visited[v] = TRUE;

addg (&front, é&rear, v);

Department of Computer Science & Engineering, ATMECE, Mysuru

2L} College of Engineering

while (front) {
v= deleteq(&front);
for (w=graph[v], w; w=w->link)
if ('visited[w->vertex]) {
printf (V3¥5d”, w->vertex);
addg(&front, &rear, w->vertex)
visited|[w->vertex] = TRUE;

Department of Computer Science & Engineering, ATMECE, Mysuru

"] College of Engineering

Connected Components

void connected(void)

{
for (1=0; i<n; i++) {
if ('visited[i]) {
dfs (1) ;
printf (“\n”) ;
} } adjacency list: Q(n+e)
} adjacency matrix: O(n2)

Department of Computer Science & Engineering, ATMECE, Mysuru

AT \/

Topics

Sequential Search on an Unordered File
Sequential Search on an Ordered File
Binary Search

Bubble Sort

Insertion Sort

Department of Computer Science & Engineering, ATMECE, Mysuru

A re N/ | BN - o s
A T M E & $:
SG Mot Problems 2 B -

. There are some very common problems that
we use computers to solve:

- Searching through a lot of records for a specific
record or set of records

> Placing records in order, which we call sorting

- There are numerous algorithms to perform
searches and sorts. We will briefly explore
a few common ones.

Department of Computer Science & Engineering, ATMECE, Mysuru

. A question you should always ask when
selecting a search algorithm is “How fast does
the search have to be?” The reason is that, in

general, the faster the algorithm is, the more
complex it is.

. Bottom line: you don’t always need to use or
should use the fastest algorithm.

. Let’s explore the following search algorithms,
keeping speed in mind.
- Sequential (linear) search
> Binary search

Department of Computer Science & Engineering, ATMECE, Mysuru

. Basic algorithm:

Get the search criterion (key)

Get the first record from the file

While ((record !'= key) and (still more records))
Get the next record

E