
DATA STRUCTURE AND APPLICATIONS

BCS304

1

Department of Computer Science and

Engineering

DATASTRUCTURE

A data structure is a class of data that can be characterized by its

organization and the operations that are defined on it.

Data Structure = Organized Data +Allowed Operations

In other words, the organized collection of data is called data

structure. A Data structure is a set of values along with the set of

operations permitted on them. It is also required to specify the

semantics of operations permitted on the data values, and this is

done by using set of axioms, which describes how these operations

work.

2

MODULE 1: INTRODUCTION TO DATASTRUCTURES

Aset of data values

Aset of functions specifying the operations permitted on the

data values

Aset of axioms describing how these operations work.

3

Classification of Data Structure

There are various ways to classify data structure :

• Primitive and Non-Primitive Data Structure

• Linear and Non-Linear Data Structure

• Homogenous and Non-Homogeneous Data Structure

• Static and Dynamic Data Structure

4

Primitive and Non-Primitive Data Structure

The data structure that are atomic (indivisible) are called

primitive. Example are integer, real, Boolean and characters.

The data structure that are not atomic are called non-primitive

or composite. Example are records, array and string.

5

That means, algorithm is a set of instruction

written to carry out certain tasks & the data

structure is the way of organizing the data with

their logical relationship retained.

To develop a program of an algorithm, we should

select an appropriate data structure for that algorithm.

Therefore algorithm and its associated data structures

from a program.

6

Data structure

Primitive DS Non-Primitive DS

Integer Character PointerFlFloo
atat

Integer Float

7

Non-Primitive DS

Linear List Non-Linear List

Array

Link List Stack

Queue Graph Trees

8

There are basic structures and directly operated
upon by the machine instructions.

In general, there are different representationon
different computers.

Integer, Floating-point number, Character constants,
string constants, pointers etc, fall in this category.

9

There are more sophisticated data
structures.

These are derived from the primitive data structures.

The non-primitive data structures emphasize on

structuring of a group of homogeneous (same type)or

heterogeneous (different type) data items.

10

The most commonly used operation on data
structure are broadly categorized into

following types:

◦ Create

◦ Selection

◦ Updating

◦ Searching

◦ Sorting

◦ Merging

◦ Destroy or Delete

12

A primitive data structure is generally a basic
structure that is usually built into the language, such

as an integer, a float.

A non-primitive data structure is built out of primitive

data structures linked together in meaningful ways,

such as a or a linked-list, binary search tree,AVLTree,

graph etc.

13

14

Linear and Non- Linear Data Structure

In a linear data structure, the data items are arranged in

a linear sequence. Example is array.

In a non-Linear data structure, the data items are not in a

sequence. Example is tree.

Homogeneous and Non- Homogenous Data Structure

In Homogeneous Structure, all the elements are of same type.

Example is arrays.

In Non-homogeneous structure, the elements may or may not

be of same type. Example is records.

15

Static and Dynamic Data Structure

Static structures are ones whose sizes and structures, associated memory

location are fixed at compile time.

Dynamic structures are ones which expand or shrink as required during the

program execution and there associated memory location change.

16

Data Structure Operations

There are six basic operations that can be

performed on data structure:-

Traversing

Searching

Sorting

Inserting

Deleting

Merging

17

(a) Traversing

Traversing means accessing and processing each element in the data structure exactly once.

This operation is used for counting the number of elements, printing the contents of the

elements etc.

b) Searching

Searching is finding out the location of a given element from a set of numbers.

c) Sorting

Sorting is the process of arranging a list of elements in a sequential order.

The sequential order may be descending order or an ascending order according to the

requirements of the data structure.

(d) Inserting

Inserting an element is adding an element in the data structure at any position. After insert

operation the number of elements are increased by one.

18

e) Deleting

Deleting an element is removing an element in the data structure at any position. After

deletion operation the number of elements are decreased by one.

(f) Merging

The process of combining the elements of two data structures into a single data structure

is called merging.

Arrays and Its Operation

DATASTRUCTURESANDAPPLICATIONS

• Array is a container which can hold a fix number of items and these items

should be of the same type. Most of the data structures make use of arrays

to implement their algorithms. Following are the important terms to

understand the concept ofArray.

• Element − Each item stored in an array is called an element.

• Index − Each location of an element in an array has a numerical index,

which is used to identify the element.

• Array Representation

• Arrays can be declared in various ways in different languages. For

illustration, let's take C array declaration.

• Arrays can be declared in various ways in different languages. For

illustration, let's take C array declaration.

• Arrays can be declared in various ways in different languages. For

illustration, let's take C array declaration.

• As per the above illustration, following are the important points to be

considered.

• Index starts with 0.

• Array length is 10 which means it can store 10 elements.

• Each element can be accessed via its index. For example, we can fetch an

element at index 6 as 9.

ARRAYS

Imagine that we have 100 scores. We need to read them,

process them and print them. We must also keep these 100

scores in memory for the duration of the program. We can

define a hundred variables, each with a different name.

But having 100 different names creates other problems. We
need 100 references to read them, 100 references to
process them and 100 references to write them.

An array is a sequenced collection of elements, normally of
the same data type, although some programming languages
accept arrays in which elements are of different types. We
can refer to the elements in the array as the first element,
the second element and so forth, until we get to the last
element.

Arrays with indexes

We can use loops to read and write the elements in an array.

We can also use loops to process elements. Now it does not

matter if there are 100, 1000 or 10,000 elements to be

processed—loops make it easy to handle them all. We can

use an integer variable to control the loop and remain in the

loop as long as the value of this variable is less than the total

number of elements in the array

We have used indexes that start from 1;

some modern languages such as C,

C++ and Java start indexes from 0.

Processing an array

Multi-dimensional arrays

The arrays discussed so far are known as one-dimensional
arrays because the data is organized linearly in only one
direction. Many applications require that data be stored in
more than one dimension. Figure shows a table, which is
commonly called a two-dimensional array.

Atwo-dimensional array

The indexes in a one-dimensional array directly define the

relative positions of the element in actual memory. Figure

shows a two-dimensional array and how it is stored in

memory using row-major or column-major storage. Row-

major storage is more common.

Memory layout of arrays

Generic

Pointers

• void *: a “pointer to anything”

• Lose all information about what type of thing is pointed
to
▫ Reduces effectiveness of compiler’s type-checking
▫ Can’t use pointer arithmetic

void *p;

int i;

char c;

p = &i;

p = &c;

putchar(*(char *)p);

type cast: tells the compiler to “change” an

object’s type (for type checking purposes –

does not modify the object in any way)

Dangerous! Sometimes necessary…

Pass-by-Reference
void

set_x_and_y(int *x, int *y)

{

*x = 1001;

*y = 1002;

}

void

f(void)

{

int a = 1;

int b = 2;

set_x_and_y(&a, &b);

}

1

2

a

b

x

y

1001

1002

Arrays and Pointers
•Array name  a to the initial (0th) array
element

a[i]  *(a + i)

•An array is passed to a function as a
pointer

▫ The array size is lost!

•Usually bad style to interchange arrays
and pointers

▫ Avoid pointer arithmetic!

Really int *array

int

foo(int array[],

unsigned int size)

{

… array[size - 1] …

}

int

main(void)

{

int a[10], b[5];

… foo(a, 10)… foo(b, 5) …

}

Passing arrays:

Must explicitly
pass the size

Arrays and Pointers
int

foo(int array[],

unsigned int size)

{

…

printf(“%d\n”, sizeof(array));

}

int

main(void)

{

int a[10], b[5];

… foo(a, 10)… foo(b, 5) …

printf(“%d\n”, sizeof(a));

}

What does this print? 8

... because array is really

a pointer

What does this print? 40

Arrays and Pointers

int

int

i;

array[10];

int

int

*p;

array[10];

for

…

(i = 0; i < 10; i++) { for

…

(p = array; p < &array[10]; p++) {

array[i] = …;

…

*p = …;

…

} }

These two blocks of code are functionally equivalent

Strings
• In C, strings are just an array of characters

▫ Terminated with ‘\0’ character

▫ Arrays for bounded-length strings

▫ Pointer for constant strings (or unknown length)

char str1[15] = “Hello, world!\n”;
char *str2 = “Hello, world!\n”;

length H e l l o , w o r l d ! \

n

H e l l o , w o r l d ! \

n
terminator

Pascal, Java, …

C, …

C terminator: ’\0’

String length

• Must calculate length:

int

strlen(char str[])

{

int len = 0;

while (str[len] != ‘\0’)

len++;

return (len);

}

• Provided by standard C library: #include <string.h>

can pass an
array or pointer

Check for
terminator

array access
to pointer!

What is the size
of the array???

Pointer to Pointer (char **argv)

Passing arguments to main:

int

main(int argc, char **argv)

{

...

}

an array/vector of

char *

Recall when passing an
array, a pointer to the
first element is passed

size of the argv array/vector

Suppose you run the program this way

UNIX% ./program hello 1 2 3

argc == 5 (five strings on the
command line)

char **argv

argv[4]

argv[3]

argv[2]

argv[1]

argv[0]

0x1020

0x1018

0x1010

0x1008

0x1000

“./program”

“hello”

“1”

“2”

“3”

These are strings!!
Not integers!

Structures and Unions in C

Objectives
• Be able to use compound data structures in

programs

• Be able to pass compound data structures as
function arguments, either by value or by
reference

• Be able to do simple bit-vector manipulations

Structures
•Compound data:

•A date is
▫ an int month and

▫ an int day and

▫ an int year

•Unlike Java, C doesn’t automatically
define functions for initializing and
printing …

struct ADate {

int month;

int day;

int year;

};

struct ADate date;

date.month = 1;

date.day = 18;

date.year = 2018;

Structure Representation & Size

•sizeof(struct …) =

sum of sizeof(field)

alignment padding
Processor- and compiler-specific

•

•
+

61 62 EF BE AD DE

c1 c2 ipadding

struct

cha

r

cha

r

int

} foo;

CharCharInt {

c1;

c2;

i;

foo.c1 = ’a’;

foo.c2 = ’b’;

foo.i = 0xDEADBEEF;

x86 uses “little-endian” representation

Typedef

• Mechanism for creating new type names

▫ New names are an alias for some other type

▫ May improve clarity and/or portability of the
program

typedef long int64_t;

typedef struct ADate {

int month;

int day;

int year;

} Date;

int64_t i = 100000000000;

Date d = { 1, 18, 2018 };

Overload existing type
names for clarity and

portability

Simplify complex type names

int array[10];

for (i=0; i<10; i++) {

…

}

#define SIZE 10

int array[SIZE];

for (i=0; i<SIZE; i++) {

…

}

Preprocessor directive

Constants

• Allow consistent use of the same constant
throughout the program

▫ Improves clarity of the program

▫ Reduces likelihood of simple errors

▫ Easier to update constants in the program
Constant names are

capitalized by convention

Define once,
use throughout

the program

Arrays of Structures

Date birthdays[NFRIENDS];

bool

check_birthday(Date today)

{

int i;

for (i = 0; i < NFRIENDS; i++) {

if ((today.month == birthdays[i].month) &&

(today.day == birthdays[i].day))

return (true);

return (false);

}

ConstantArray declaration

Array index, then
structure field

Pointers to Structures

Date

create_date1(int month,

int day,

int year)

{

Date d;

d.month = month;

d.day

d.year

= day;

= year;

return (d);

}

void

create_date2(Date *d,

int month,

int day,

int year)

{

d->month = month;

d->day

d->year

= day;

= year;

}

Copies date

Pass-by-reference

Date today;

today = create_date1(1, 18, 2018);

create_date2(&today, 1, 18, 2018);

Pointers to Structures (cont.)
void

create_date2(Date *d,

int month,

int day,

int year)

{

d->month

d->day

=

=

month;

day;

d->year = year;

}

void

fun_with_dates(void)

{

Date today;

create_date2(&today, 1, 18, 2018);

}

0x1008

0x1004

0x1000

year: 2018

day: 18

month: 1

d: 0x1000

today.year: 2018

today.day: 18

today.month: 1

0x30A8

0x30A4

0x30A0

0x3098

Pointers to Structures (cont.)

Date *

create_date3(int month,

int day,

int year)

{

Date *d;

d->month = month;

d->day

d->year

= day;

= year;

return (d);

}

What is d pointing to?!?!
(more on this later)

Unions
• Up to programmer to determine how to interpret

a union (i.e. which member to access)

• Often used in conjunction with a “type” variable
that indicates how to interpret the union value

enum TYPE { INT, FLOAT, STRING };
struct VARIABLE {

enum TYPE type;

union VALUE value;

};

Access type to determine

how to interpret value

Unions
• Storage

▫ size of union is the size of its largest member

▫ avoid unions with widely varying member sizes;
for the larger data types, consider using pointers

instead

• Initialization

▫ Union may only be initialized to a value
appropriate for the type of its first member

Structures

• Reminder… the C struct declaration creates a data type that groups

objects of possibly different types into a single object

• Implementation similar to arrays

• All components are stored in a contiguous region of memory

• Apointer to a structure is the address of its first byte

• The compiler maintains information about each structure type indicating the

byte offset of each field

• Generates references to structure elements using these offsets as

displacements in memory referencing instructions

Structure allocation

StructureAccess

find_a:
pushl %ebp
movl
movl

%esp, %ebp
12(%ebp), %eax // idx (2nd arg)

sall $2, %eax // mult by 4
addl 8(%ebp), %eax // ptr to struct (1starg)
addl $4, %eax
popl %ebp
ret

Structure referencing (cont)

“i” represents
the element
of “a” that I
want “p” to
point to

• Structures (records)
▫ Arrays are collections of data of the same type. In C there is

an alternate way of grouping data that permit the data to
vary in type.
• This mechanism is called the struct, short for structure.

▫ Astructure is a collection of data items, where each item is
identified as to its type and name.

Structures and
Unions

• Aperson born on February 11, 1994, would have have values for the date

struct set as

Structures and Unions
▫ We can also embed a structure within a structure.

◦ Aunion declaration is similar to a structure.
◦ The fields of a union must share their memory space.

◦ Only one field of the union is “active” at any given time
• Example:Add fields for male and female.

Structures and Unions

person1.sex_info.sex = male;

person1.sex_info.u.beard = FALSE;

and

person2.sex_info.sex = female;

person2.sex_info.u.children = 4;

• Internal implementation of structures

◦ The fields of a structure in memory will be stored in the same

way using increasing address locations in the order specified in

the structure definition.

◦ Holes or padding may actually occur

• Within a structure to permit two consecutive components to be properly

aligned within memory

◦ The size of an object of a struct or union type is the amount of

storage necessary to represent the largest component, including

any padding that may be required.

Structures and Unions

◦ typedef struct list {
char data;

list *link;
}

◦ list item1, item2, item3;
item1.data=‘a’;
item2.data=‘b’;
item3.data=‘c’;
item1.link=item2.link=item3.link=NULL;

c

three nodes
item1.link=&item2;
item2.link=&item3;

• malloc: obtain a node
(memory) free: release

y bmeamor

Self Referential Structures

Dynamic MemoryAllocation

DATASTRUCTURESAND

APPLICATIONS

Problem with Arra60ys
• Sometimes

▫ Amount of data cannot be predicted beforehand

▫ Number of data items keeps changing during program execution

• Example: Search for an element in an array of N elements

• One solution: find the maximum possible value of N and allocate an array

of N elements

▫ Wasteful of memory space, as N may be much smaller in some executions

▫ Example: maximum value of N may be 10,000, but a particular run may

need to search only among 100 elements

• Using array of size 10,000 always wastes memory in most cases

61

Better Solution
• Dynamic memory allocation

▫ Know how much memory is needed after the program is run

• Example: ask the user to enter from keyboard

▫ Dynamically allocate only the amount of memory needed

• C provides functions to dynamically allocate memory

▫ malloc, calloc, realloc

62

MemoryAllocation Functions
• malloc
▫ Allocates requested number of bytes and returns a

pointer to the first byte of the allocated space

• calloc

▫ Allocates space for an array of elements, initializes them
to zero and then returns a pointer to the memory.

• free

▫ Frees previously allocated space.

• realloc

▫ Modifies the size of previously allocated space.

• We will only do malloc and free

Allocating a Block of Mem
63

ory

• Ablock of memory can be allocated using the
function malloc
▫ Reserves a block of memory of specified size and

returns a pointer of type void

▫ The return pointer can be type-casted to any pointer
type

• General format:

type *p;
p = (type *) malloc (byte_size);

64

Example
p = (int *) malloc(100 * sizeof(int));

▫ Amemory space equivalent to 100 times the size of

an int bytes is reserved

▫ The address of the first byte of the allocated

memory is assigned to the pointer p of type int

p

400 bytes of space

65

Contd.
• cptr = (char *) malloc (20);

Allocates 20 bytes of space for the pointer cptr of type char

• sptr = (struct stud *) malloc(10*sizeof(struct stud));

Allocates space for a structure array of 10 elements. sptr

points to a structure element of type struct stud

Always use sizeof operator to find number of bytes for a data type,

as it can vary from machine to machine

66

Points to Note

• malloc always allocates a block of contiguous bytes
▫ The allocation can fail if sufficient contiguous memory

space is not available

▫ If it fails, malloc returns NULL

if ((p = (int *) malloc(100 * sizeof(int))) == NULL)

{

printf (“\n Memory cannot be allocated”);

exit();

}

Using the malloc’d Ar
67

ray
• Once the memory is allocated, it can be used with pointers, or

with array notation

• Example:

int *p, n, i;

scanf(“%d”, &n);

p = (int *) malloc (n * sizeof(int));

for (i=0; i<n; ++i)

scanf(“%d”, &p[i]);

The n integers allocated can be accessed as *p, *(p+1), *(p+2),…,

*(p+n-1) or just as p[0], p[1], p[2], …,p[n-1]

68

Example
printf("Input heights for %d

students \n",N);

for (i=0; i<N; i++)

scanf ("%f", &height[i]);

for(i=0;i<N;i++)

sum += height[i];

avg = sum / (float) N;

printf("Average height = %f \n",

avg);

free (height);

return 0;

}

int main()

{

int i,N;

float *height;

float sum=0,avg;

printf("Input no. of students\n");

scanf("%d", &N);

height = (float *)

malloc(N * sizeof(float));

Releasing the Alloca69ted
Space: free

• An allocated block can be returned to the system for

future use by using the free function

• General syntax:

free (ptr);

where ptr is a pointer to a memory block which has

been previously created using malloc

• Note that no size needs to be mentioned for the

allocated block, the system remembers it for each

pointer returned

Can we allocate only

arr70ays?

• malloc can be used to allocate memory for single
variables also
▫ p = (int *) malloc (sizeof(int));

▫ Allocates space for a single int, which can be accessed
as *p

• Single variable allocations are just special case of
array allocations
▫ Array with only one element

malloc()-ing array of str71

uctures
typedef struct{

char name[20];
int roll;
float SGPA[8], CGPA;

} person;

void main()

{

person *student;

int i,j,n;

scanf("%d", &n);

student = (person *)malloc(n*sizeof(person));

for (i=0; i<n; i++) {

scanf("%s", student[i].name);

scanf("%d", &student[i].roll);

for(j=0;j<8;j++) scanf("%f", &student[i].SGPA[j]);

scanf("%f", &student[i].CGPA);

}

}

Static array of

point72ers
#define N 20

#define M 10

int main()

{

char word[N], *w[M];

int i, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {

scanf("%s", word);

w[i] = (char *) malloc ((strlen(word)+1)*sizeof(char));

strcpy (w[i], word) ;

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return 0;

}

73

Static array of

pointers
#define N 20

#define M 10

int main()

{

char word[N], *w[M];

int i, n;

scanf("%d",&n);

for (i=0; i<n; ++i) {

scanf("%s", word);

ar));

}

for (i=0; i<n; i++) printf("w[%d] = %s \n",i,w[i]);

return 0;

}

4

Tendulkar

Sourav

Khan

India

w[0] = Tendulkar

w[1] = Sourav

w[2] = Khan
w[i] = (char *) malloc ((strlen(word)+1)*sizeof(ch w[3] = India

strcpy (w[i], word) ;

Output

74

0

1

2

3

9

How it will look

like
w

T e n d u l k a r \0

S o u r a v \0

K h a n \0

I n d i a \0

malloc()

75

Pointers to Pointers

• Pointers are also variables (storing addresses),
so they have a memory location, so they also
have an address

• Pointer to pointer – stores the address of a
pointer variable

int x = 10, *p, **q;
p = &x;
q = &p;
printf(“%d %d %d”, x, *p, *(*q));

will print 10 10 10 (since *q = p)

Allocating Pointer to Poin7t6 er

int **p;

p = (int **) malloc(3 * sizeof(int *));

p

p[1]

p[2]

p[0]

int ** int *

int *

int *

2D array

77

#include <stdlib.h>

int main()
{

int **array;
array = (int**) malloc(nrows * sizeof(int *));

for(i = 0; i < nrows; i++)
{

array[i] = (int*)malloc(ncolumns *
sizeof(int));

}

{

2D

array

Int main()
{

}

0

1

2

3

9

x

x

*x;

*(x+1);

**(x+1); x[1][0]

((x+1)+4)
x[1][4]

*((*x)+8) x[0][8]

*(x[3]+7)
???

Dynamic Allocation of 2-d79Arrays
• Recall that address of [i][j]-th element is found by first finding the

address of first element of i-th row, then adding j to it

• Now think of a 2-d array of dimension [M][N] as M 1-d arrays,

each with N elements, such that the starting address of the M

arrays are contiguous (so the starting address of k-th row can be

found by adding 1 to the starting address of (k-1)-th row)

• This is done by allocating an array p of M pointers, the pointer p[k]

to store the starting address of the k-th row

80

Cont

d.
• Now, allocate the M arrays, each of N elements, with p[k] holding

the pointer for the k-th row array

• Now p can be subscripted and used as a 2-d array

• Address of p[i][j] = *(p+i) + j (note that *(p+i) is a pointer itself, and

p is a pointer to a pointer)

Dynamic Allocation of 2-d Arr81 ays

int **allocate (int h, int w)

{

int **p;

int i, j;

p = (int **) malloc(h*sizeof (int *));

for (i=0;i<h;i++)

p[i] = (int *) malloc(w * sizeof (int));

return(p);

}

Allocate array

of pointers

Allocate array of

integers for each

row

w

)

• }

• void read_data (int **p, int h, int

• {

• int i, j;

• for (i=0;i<h;i++)

for (j=0;j<w;j++)

• scanf ("%d", &p[i][j]);

•Elements accessed like

2-D array elements.

82Contd.
void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

printf ("%5d ", p[i][j]);

printf ("\n");

p = allocate (M, N);

read_data (p, M, N);

}

} printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}

83Contd.
void print_data (int **p, int h, int w)

{

int i, j;

for (i=0;i<h;i++)

{

for (j=0;j<w;j++)

printf ("%5d ", p[i][j]);

printf ("\n");

}

}

Give M and N

3 3

1 2 3

4 5 6

7 8 9

The array read

as

1 2 3

4 5 6

7 8 9

int main()

{

int **p;

int M, N;

printf ("Give M and N \n");

scanf ("%d%d", &M, &N);

p = allocate (M, N);

read_data (p, M, N);

printf ("\nThe array read as \n");

print_data (p, M, N);

return 0;

}

84

Memory Layout in Dynamic Allocation
int **allocate (int h, int w)
{

int **p;
int i, j;

p = (int **)malloc(h*sizeof (int
*));

for (i=0; i<h; i++)
printf(“%10d”,&p[i]);
printf(“\n\n”);
for (i=0;i<h;i++)
p[i] = (int

*)malloc(w*sizeof(int));
return(p);

}

• int main()

• {

• int **p;

• int M, N;

• printf ("Give M and N

\n"); scanf ("%d%d", &M,

&N); p = allocate (M, N);

• for (i=0;i<M;i++) {

• for (j=0;j<N;j++)

• printf ("%10d", &p[i][j]);

printf(“\n”);

• }

• return 0;

• }

85

Output
3 3

31535120 31535128 31535136

31535152 31535156 31535160

31535184 31535188 31535192

31535216 31535220 31535224

Starting address of each
row, contiguous

(pointers are 8 bytes
long)

Elements in each
row are

contiguous

Passing pointers to

function

86

Int main()
{

int x=5;
……………..
…………..
foo(&x);

}

void foo(int *a)
{

int m;
m=*a;
m=m+1;
*a=m;

}

x

5

&x=1400

1400

a

*a

1400

Call by

value

87

Int main()
{

int x=10, y=5;
swap(x,y);

}

swap(int a, int b)
{

int temp;
temp=a;
a=b;
b=temp;

}

x y

10 5

a b

10 5

Call by

Reference

88

Int main()
{

int x=10, y=5;
swap(&x,&y);

}

swap(int *a, int *b)
{

int temp;
temp=*a;
*a=*b;
*b=temp;

}

x y

10 51400 1500

a b

1400 1500
*a

*b

Arrays- Representation of Linear

Arrays in Memory

DATASTRUCTURESANDAPPLICATIONS

Overvie

w
• An array

▫ a single name for a collection of data values

▫ all of the same data type

▫ subscript notation to identify one of the values

• A carryover from earlier programming languages

• More than a primitive type, less than an object

▫ like objects when used as method parameters and return types

▫ do not have or use inheritance

• Accessing each of the values in an array

▫ Usually a for loop

Creating

Arrays

• General syntax for declaring an array:

Base_Type[] Array_Name = new Base_Type[Length];

• Examples:
80-element array with base type char:
char[] symbol = new char[80];

100-element array of doubles:
double[] reading = new double[100];

70-element array of Species:
Species[] specimen = new Species[70];

Three Ways to Use []

with anAr(raByraNcakmeets)

1. Declaring an array: int[] pressure

• creates a name of type "int array"
▫ types int and int[] are different

• int[]: type of the array

• int : type of the individual values

1. To create a new array, e.g. pressure = new int[100];

2. To refer to a specific element in the array
- also called an indexed variable, e.g.

pressure[3] = keyboard.nextInt();

System.out.println("You entered" + pressure[3]);

Array Length

• Specified by the number in brackets when created with
new

▫ maximum number of elements the array can hold
▫ storage is allocated whether or not the elements are

assigned values

• the attributelength,

Species[] entry = new Species[20];

System.out.println(entry.length);

• The length attribute is established in the declaration

and cannot be changed unless the array is redeclared

Subscript Range

• Array subscripts use zero-numbering

▫ the first element has subscript 0

▫ the second element has subscript 1

▫ etc. - the nth element has subscript n-1
▫ the last element has subscript length-1

• For example: an int array with 4 elements

Subscript: 0 1 2 3

Value: 97 86 92 71

Subscript out of Range Error

• Using a subscript larger than length-1 causes a run

time (not a compiler) error
▫ an ArrayOutOfBoundsException is thrown

🞄you do not need to catch it
🞄you need to fix the problem and recompile your

code
• Other programming languages, e.g. C and C++, do

not even cause a run time error!
▫ one of the most dangerous characteristics of these

languages is that they allow out of bounds array
indices.

Array Length Specified at Run-time

// array length specified at compile-time

int[] array1 = new int[10];

// array length specified at run-time

// calculate size…

int size = …;

int[] array2 = new int[size];

Programming

Use SinTgiupla:rArray Names

• Using singular rather than plural names for arrays
improves readability

• Although the array contains many elements the most
common use of the name will be with a subscript, which
references a single value.

• It is easier to read:
▫ score[3] than

▫ scores[3]

Initializing an Array's

in Its DeclaVraaltuioens

• can be initialized by putting a comma-separated list in braces

• Uninitialized elements will be assigned some default value, e.g. 0 for
int arrays (explicit initialization is recommended)

• The length of an array is automatically determined when the values
are explicitly initialized in the declaration

• For example:
double[] reading = {5.1, 3.02, 9.65};

System.out.println(reading.length);

- displays 3, the length of the array reading

Initializing Array Elements in

a Loop
• A for loop is commonly used to initialize array elements

• For example:
int i;//loop counter/array index

int[] a = new int[10];

for(i = 0; i < a.length; i++)

a[i] = 0;

▫ note that the loop counter/array index goes from 0 to length - 1

▫ it counts through length = 10 iterations/elements using the

zero-numbering of the array index

Programming Tip:

Do not count on default initial values for array elements

▫ explicitly initialize elements in the declaration or in a loop

Arrays, Classes, and

public void getFigures()

{

System.out.println("Enter number of sales associates:");

numberOfAssociates = SavitchIn.readLineInt();

SalesAssociate[] record =

new SalesAssociate[numberOfAssociates];

for (int i = 0; i < numberOfAssociates; i++)
{

record[i] = new SalesAssociate();

System.out.println("Enter data for associate " + (i + 1));

record[i].readInput();
System.out.println();

}

}

each array element is
a SalesAssociate

variable

use the readInput

method of
SalesAssociate

be declared and the
class's methods applied
to the elements of the
array.

An array of a class caMn ethThoisdexscerpt from the Sales Report program
in the text uses the SalesAssociate class

to create an array of sales associates:

create an array of
SalesAssociates

Arrays and Array

Elements as Method

Arguments
• Arrays and array elements can be

▫ used with classes and methods just like other
objects

▫ be an argument in a method

▫ returned by methods

Indexed

Variables

as Method

Arguments

nextScore is

an array of ints

an element of
nextScore is

an argument of
method
average

average

method definition Excerpt fromArgumentDemo
program in text.

public static void main(String[] arg)
{

Scanner keyboard = new Scanner(System.in);a
System.out.println("Enter your score on exam 1:");
int firstScore = keyboard.nextInt();
int[] nextScore = new int[3];
int i;
double possibleAverage;
for (i = 0; i < nextScore.length; i++)

nextScore[i] = 80 + 10*i;
for (i = 0; i < nextScore.length; i++)
{

possibleAverage = average(firstScore, nextScore[i]);
System.out.println("If your score on exam 2 is "

+ nextScore[i]);
System.out.println("your average will be "

+ possibleAverage);
}

}
public static double average(int n1, int n2)
{

return (n1 + n2)/2.0;
}

PassingArray Elements

public static void main(String[] arg)

{

SalesAssociate[] record = new SalesAssociate[numberOfAssociates];

int i;

for (i = 0; i < numberOfAssociates; i++)

{

record[i] = new SalesAssociate();

System.out.println("Enter data for associate " + (i + 1));

record[i].readInput();
}

m(record[0]);

}

public static void m(SalesAssociate sa)

{

}

When Can a Method

Change an Indexed

• prVimaitrivieatybpelseareA“rcagll-ubym-vaelune”t?
▫ only a copy of the value is passed as an argument

▫ method cannot change the value of the indexed
variable

• class types are reference types (“call by reference”)

▫ pass the address of the object

▫ the corresponding parameter in the method
definition becomes an alias of the object

▫ the method has access to the actual object

▫ so the method can change the value of the indexed
variable if it is a class (and not a primitive) type

PassingArray Elements

int[] grade = new int[10];

obj.method(grade[i]); // grade[i] cannot be changed

… method(int grade)

{

}

// pass by value; a copy

Person[] roster = new Person[10];

obj.method(roster[i]); // roster[i] can be changed

… method(Person p)

{

}

// pass by reference; an alias

Array Names as Method Arguments

• Use just the array name and no brackets

• Pass by reference
▫ the method has access to the original array and can change

the value of the elements

• The length of the array passed can be different for
each call

▫ when you define the method you do not need to
know the length of the array that will be passed

▫ use the length attribute inside the method to
avoid ArrayIndexOutOfBoundsExceptions

Example: An Array as an Argument

in a Method Call

public static void showArray(char[] a)

{

int i;

for(i = 0; i < a.length; i++)

System.out.println(a[i]);

}

char[] grades = new char[45];

MyClass.showArray(grades);

the method's argument

is the name of an array

of characters

uses the length attribute

to control the loop

allows different size arrays

and avoids index-out-of-

bounds exceptions

Arguments for the Method
main

• The heading for the main method shows a parameter that is an
array of Strings:
public static void main(String[] arg)

• When you run a program from the command line, all words
after the class name will be passed to the main method in the
arg array.
java TestProgram Josephine Student

• The following main method in the class TestProgramwill
print out the first two arguments it receives:

• In this example, the output from the command line above will
be:
Hello Josephine Student

Public static void main(String[] arg)

{

System.out.println(“Hello “ + arg[0] + “ “ + arg[1]);

}

Using = with Array Names:

Remember They Are Reference Types

int[] a = new int[3];

int[] b = new int[3];

a[i] = i;

b = a;

System.out.println(a[2] + " " + b[2]);

a[2] = 10;

System.out.println(a[2] + " " + b[2]);

The output for this code will be:
2 2

10 10

for(int i=0; i < a.length; i++) This does not create a
copy of array a;

it makes b another name

for array a.

Avalue changed in a

is the same value
obtained with b

Using == with array names:

remember they are reference types

int i;

int[] a = new int[3];

int[] b = new int[3];

for(i=0; i < a.length; i++)

a[i] = 0;

for(i=0; i < b.length; i++)

b[i] = 0;

if(b == a)

System.out.println("a equals b");

else

System.out.println("a does not equal b");

a and b are both

3-element arrays of ints

all elements of a and b are

assigned the value 0

tests if the
addresses of a

and b are equal,

not if the array

values are equal

The output for this code will be " a does not equal b"

because the addresses of the arrays are not equal.

Behavior of Three Operations

Primitive

Type

Class

Type

Entire

Array

Array

Element

Assignment

(=)

Copy content Copy

address

Copy

address

Depends on

primitive/

class type

Equality

(==)

Compare

content

Compare

address

Compare

address

Depends on

primitive/

class type

Parameter

Passing

Pass by

value

(content)

Pass by

reference

(address)

Pass by

reference

(address)

Depends on

primitive/

class type

Testing Two

Arrays for

Equality

• To test two arrays
for equality you
need to define an
equals method

that returns true if
and only the arrays
have the same
length and all
corresponding
values are equal

public static boolean equals(int[] a,

int[] b)

{

boolean match = false;

if (a.length == b.length)

{

match = true; //tentatively

int i = 0;

while (match && (i < a.length))

{

if (a[i] != b[i])

match = false;

i++;

}

}

return match;

}

Methods
that

Return

anArray
• the address of

the array is
passed

• The local array
name within
the method is
just another
name for the
original array

public class returnArrayDemo

{

public static void main(String arg[])

{

char[] c;

c = vowels();

for(int i = 0; i < c.length; i++)

System.out.println(c[i]);

}

public static char[] vowels()

{

char[] newArray = new char[5];

newArray[0] = 'a';

newArray[1] = 'e';

newArray[2] = 'i';

newArray[3] = 'o';

newArray[4] = 'u';

return newArray;
}

} c, newArray, and

the return type of
vowels are

all the same type:
char []

Wrapper Classes for

• Arrays can be madAe irntroaobyjecsts by creating a wrapper class

▫ similar to wrapper classes for primitive types

• In the wrapper class:

▫ make an array an attribute

▫ define constructors

▫ define accessor methods to read and write element values and
parameters

• The text shows an example of creating a wrapper class for an array of
objects of type OneWayNoRepeatsList

▫ the wrapper class defines two constructors plus the following
methods:
addItem, full, empty, entryAt, atLastEntry, onList,
maximumNumberOfEntries,numberOfEntries, and eraseList

Partially Filled

Arrays

• Sometimes only part of an array has been filled with data

• Array elements always contain something

▫ elements which have not been written to

• contain unknown (garbage) data so you should avoid reading
them

• There is no automatic mechanism to detect how many elements
have been filled

▫ you, the programmer need to keep track!

• An example: the instance variable countOfEntries (in the
class OneWayNoRepeatsList) is incremented every time
addItem is called (see the text)

Buy milk.

Call home.

Go to beach.

Example of a Partially Filled Array

countOfEntries - 1

garbage values

entry[0]

entry[1]

entry[2]

entry[3]

entry[4]

countOfEntries has a value of 3.

entry.length has a value of 5.

Arrays- Operations

Deleting, Searching and Sorting

DATASTRUCTURESANDAPPLICATIONS

Searching an

Array
• There are many techniques for searching an array for a particular

value

• Sequential search:
▫ start at the beginning of the array and proceed in sequence until

either the value is found or the end of the array is reached*
• if the array is only partially filled, the search stops when the

last meaningful value has been checked
▫ it is not the most efficient way

▫ but it works and is easy to program

* Or, just as easy, start at the end and work backwards toward the
beginning

Example: Sequential Search of an Array

public boolean onList(String item)

{

boolean found = false;

int i = 0;

while ((! found) &&

The onList method of

OneWayNoRepeatsLis

sequentially searches th

array entry to see it the

parameter item is in the

array

t

e

(i < countOfEntries))
{

if (item.equals(entry[i]))

found = true;

else

i++;

}

return found;

}

Returning

ArrayaAnttribute (Instance Variable)

• Access methods that return references to array instance
variables cause problems for information hiding.
Example:

Even though entries is declared private, a method outside the
class can get full access to it by using getEntryArray.

• In most cases this type of method is not necessary anyhow.
• If it is necessary, make the method return a copy of the array

instead of returning a reference to the actual array.

class …

{

private String[] entry;

…

public String[] getEntryArray()

{

return entry;

}

Sorting an

Array
• Sorting a list of elements is another very common problem

(along with searching a list)

▫ sort numbers in ascending order

▫ sort numbers in descending order

▫ sort strings in alphabetic order

▫ etc.

• There are many ways to sort a list, just as there are many ways
to search a list

• Selection sort

▫ one of the easiest

▫ not the most efficient, but easy to understand and program

Selection Sort

Algorithm for an

Array of Integers
To sort an array on integers in ascending order:
1. Find the smallest number and record its index

2. swap (interchange) the smallest number with the
first element of the array
▫ the sorted part of the array is now the first

element
▫ the unsorted part of the array is the remaining

elements
3. repeat Steps 2 and 3 until all elements have been

placed
▫ each iteration increases the length of the sorted

part by one

Selection Sort

Example

7 6 11 17 3 15 5 19 30 14

Problem: sort this 10-element array of integers in ascending order:

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

1st iteration: smallest value is 3, its index is 4, swap a[0] with a[4]

before:

3 6 11 17 7 15 5after:

2nd iteration: smallest value in remaining list is 5, its index is 6, swap a[1] with a[6]

3 6 11 17 7 15 5

3 5 11 17 7 15 6 19 30 14

How many iterations are needed?

Key:

smallest remaining value

sorted elements

Example: Selection Sort

• Notice the precondition: every array element has a value

• may have duplicate values

• broken down into smaller tasks
▫ "find the index of the smallest value"
▫ "interchange two elements"

▫ private because they are helper methods (users are

not expected to call them directly)

/**

*Precondition:

*Every indexed variable of the array a has a value.

*Action: Sorts the array a so that

*a[0] <= a[1] <= ... <= a[a.length - 1].

**/

public

{

static void sort(int[] a)

int index, indexOfNextSmallest;

for (index = 0; index < a.length - 1; index++)

{//Place the correct value in a[index]:

indexOfNextSmallest = indexOfSmallest(index, a);

interchange(index,indexOfNextSmallest, a);

//a[0] <= a[1] <=...<= a[index] and these are

//the smallest of the original array elements.

//The remaining positions contain the rest of

//the original array elements.

}

}

Selection Sort Code

Insertion Sort

• Basic Idea:

▫ Keeping expanding the sorted portion by one
▫ Insert the next element into the right position in the sorted

portion
• Algorithm:

1. Start with one element [is it sorted?] – sorted portion

2. While the sorted portion is not the entire array
1. Find the right position in the sorted portion for the next

element
2. Insert the element

3. If necessary, move the other elements down

4. Expand the sorted portion by one

Insertion Sort: An example

• First iteration

▫ Before: [5], 3, 4, 9, 2

▫ After: [3, 5], 4, 9, 2

• Second iteration

▫ Before: [3, 5], 4, 9, 2

▫ After: [3, 4, 5], 9, 2

• Third iteration

▫ Before: [3, 4, 5], 9, 2

▫ After: [3, 4, 5, 9], 2

• Fourth iteration

▫ Before: [3, 4, 5, 9], 2

▫ After: [2, 3, 4, 5, 9]

Bubble Sort

• Basic Idea:

▫ Expand the sorted portion one by one

▫ “Sink” the largest element to the bottom after comparing adjacent
elements

▫ The smaller items “bubble” up

• Algorithm:

▫ While the unsorted portion has more than one element

• Compare adjacent elements

• Swap elements if out of order

• Largest element at the bottom, reduce the unsorted portion by
one

Bubble Sort: An example

• First Iteration:
▫ [5, 3], 4, 9, 2 [3, 5], 4, 9, 2
▫ 3, [5, 4], 9, 2 3, [4, 5], 9, 2
▫ 3, 4, [5, 9], 2 3, 4, [5, 9], 2
▫ 3, 4, 5, [9, 2] 3, 4, 5, [2, 9]

• Second Iteration:
▫ [3, 4], 5, 2, 9  [3, 4], 5, 2, 9
▫ 3, [4, 5], 2, 9  3, [4, 5], 2, 9
▫ 3, 4, [5, 2], 9  3, 4, [2, 5], 9

• Third Iteration:
▫ [3, 4], 2, 5, 9  [3, 4], 2, 5, 9
▫ 3, [4, 2], 5, 9  3, [2, 4], 5, 9

• Fourth Iteration:
▫ [3, 2], 4, 5, 9  [2, 3], 4, 5, 9

Multidimensional Arrays

• Arrays with more than one index

▫ number of dimensions = number of indexes

• Arrays with more than two dimensions are a simple extension of
two-dimensional (2-D) arrays

• A 2-D array corresponds to a table or grid

▫ one dimension is the row

▫ the other dimension is the column

▫ cell: an intersection of a row and column

▫ an array element corresponds to a cell in the table

Table as a 2-Dimensional

Array

$1311

Balances for Various Interest Rates
Compounded Annually

(Rounded to Whole Dollar Amounts)

Year 5.00% 5.50% 6.00% 6.50% 7.00% 7.50%
1 $1050 $1055 $1060 $1065 $1070 $1075
2 $1103 $1113 $1124 $1134 $1145 $1156
3 $1158 $1174 $1191 $1208 $1225 $1242

4 $1216 $1239 $1262 $1286 $1335
5 $1276 $1307 $1338 $1370 $1403 $1436
… … … … … … …

• The table assumes a starting balance of $1000

• First dimension: row identifier - Year

• Second dimension: column identifier - percentage

• Cell contains balance for the year (row) and percentage (column)

• Balance for year 4, rate 7.00% = $1311

Table as a 2-D

Array

$1311

Indexes 0 1 2 3 4 5
0 $1050 $1055 $1060 $1065 $1070 $1075
1 $1103 $1113 $1124 $1134 $1145 $1156
2 $1158 $1174 $1191 $1208 $1225 $1242

3 $1216 $1239 $1262 $1286 $1335
4 $1276 $1307 $1338 $1370 $1403 $1436
… … … … … … …

Row Index 3

(4th row)

• Generalizing to two indexes: [row][column]

• First dimension: row index

• Second dimension: column index

• Cell contains balance for the year/row and percentage/column

• All indexes use zero-numbering

▫ Balance[3][4] = cell in 4th row (year = 4) and 5th column (7.50%)

▫ Balance[3][4] = $1311 (shown in yellow)

Column Index 4

(5th column)

Processing a 2-D

for LooAprsrNaeys:ted 2-Deep
• To process all elements of an n-D array nest n for loops

▫ each loop has its own counter that corresponds to an index

• For example: calculate and enter balances in the interest table
▫ inner loop repeats 6 times (six rates) for every outer loop

iteration
▫ the outer loop repeats 10 times (10 different values of years)

▫ so the inner repeats 10 x 6 = 60 times = # cells in table

int[][] table = new int[10][6];

int row, column;

for (row = 0; row < 10; row++)

for (column = 0; column < 6; column++)

table[row][column] = balance(1000.00,

row + 1, (5 + 0.5*column));

Excerpt from
main method of
InterestTable

Multidimensional Array Parameters

and Returned Values

• Methods may have multi-D array parameters

• Methods may return a multi-D array as the value returned

• The situation is similar to 1-D arrays, but with more brackets
• Example: a 2-D int array as a method argument

public static void showTable(int[][] displayArray)

{

int row, column;

for (row = 0; row < displayArray.length; row++)

{

System.out.print((row + 1) + " ");

for (column = 0; column < displayArray[row].length; column++)

System.out.print("$" + displayArray[row][column] + " ");
System.out.println();

}

}

Notice how the number

of columns is obtained

Notice how the number

of rows is obtained

showTable

method from class
InterestTable2

Implementation of

Multidimensional Arrays

• Multidimensional arrays are implemented as arrays of
arrays.

Example:
int[][] table = new int[3][4];

▫ table is a one-dimensional array of length 3

▫ Each element in table is an array with base type int.

• Access a row by only using only one subscript:
▫ table[0].length gives the length (4) of the first row in the

array
0 1 2 3

0

1

2 table[0] refers to the first

row in the array, which is a

one-dimensional array.

Note: table.length

(which is 3 in this

case) is not the

same thing as
table[0].length

(which is 4).

RaggedArrays

• Ragged arrays have rows of unequal length

▫ each row has a different number of columns, or entries

• Ragged arrays are allowed in Java

• Example: create a 2-D int array named b with 5 elements in the

first row, 7 in the second row, and 4 in the third row:
int[][] b = new int[3][];

b[0] = new int[5];

b[1] = new int[7];

b[2] = new int[4];

Programming Example:

Employee Time Records

• The class TimeBook uses several arrays to keep track of employee

time records:
public class TimeBook
{

private int numberOfEmployees;

private int[][] hours;

private int[] weekHours;

private int[] dayHours;

. . .

}

hours[i][j] has

the hours for
employee j on day i

weekHours[j] has

the week's hours for
employee j+1

dayHours[i] has the

total hours worked by all
employees on day i

Nested Loops with MultidimensionalArrays

• The method computeWeekHoursuses

nested for loops to compute the week's total

hours for each employee.

• Each time through the outer loop body, the
inner loop adds all the numbers in one
column of the hours array to get the value
for one element in the weekHours array.

hours

array

weekHours

array

8 0 9

8 0 9

8 8 8

8 8 4

8 8 8

0

1

2

3

4

for (employeeNumber = 1;

employeeNumber <= numberOfEmployees; employeeNumber++)

{ // Process one employee

sum = 0;

for (dayNumber = 0; dayNumber < 5; dayNumber++)

sum = sum + hours[dayNumber][employeeNumber – 1];

weekHours[employeeNumber – 1] = sum;

}

0 1 2

0 1 2

40 24 38

Parallel
publiAc crlrasas yCosurse
{

private String _name;

private String[] _studentName;

private int[] _studentId;

private float[] _studentGrade;

private String[] _assignmentName; // parallel array?

public Course(String name, int numOfStudents)

{

_name = name;

_studentName = new String[numOfStudents];

_studentId = new int[numOfStudents];

_studentGrade = new float[numOfStudents];

for (int i = 0; i < numOfStudents; i++)

{

_studentName[i] = “none”;

_studentId[i] = 0;

_studentGrade[i] = 0.0;

}

}

}

Array of

publOic cblajsseStcudtenst
{

private String _name;

private int _id;

private float _grade;

public Student() { _name = “none”; _id = 0;

_grade = .0; }

public Student(String name, int id, float grade)

{ _name = name; _id = id;

_grade = grade;}

}

public class Course

{

private String _name;

private Student[] _student;

public Course(String name, int numOfStudents)

{

_name = name;

_student = new Student[numOfStudents];

for (int i = 0; i < numOfStudents; i++)

// how to init_student[i] = new Student();
name,id,grade for each obj

}}

Array Operations -

PoSplyanrsoemMiaatlrsiceasn.d

• Is it necessary to define an array as an ADT?

▫ C++ array requires the index set to be a set of
consecutive integers starting at 0

▫ C++ does not check an array index to ensure that
it belongs to the range for which the array is
defined.

ADT 2.1 Abstract data type

GeneralArray
class GeneralArray {
// objects:Aset of pairs < index, value> where for each value of index in IndexSet there
// is a value of type float. IndexSet is a finite ordered set of one or more dimensions,
// for example, {0, …, n-1} for one dimension, {(0, 0), (0, 1), (0, 2),(1, 0), (1, 1), (1, 2), (2, 0),
// (2, 1), (2, 2)} for two dimensions, etc.

public:

GeneralArray(int j; RangeList list, float initValue = defatultValue);
// The constructor GeneralArray creates a j dimensional array of floats; the range of
// the kth dimension is given by the kth element of list. For each index i in the index
// set, insert <i, initValue> into the array.

float Retrieve(index i);
// if (i is in the index set of the array) return the float associated with i
// in the array; else signal an error

void Store(index i, float x);
// if (i is in the index set of the array) delete any pair of the form <i, y> present
// in the array and insert the new pair <i, x>; else signal an error.

}; // end of GeneralArray

Polynomial Representations

Representation 1
private:

int degree; // degree ≤ MaxDegree
float coef [MaxDegree + 1];

Representation 2
private:

int degree;

float *coef;

Polynomial::Polynomial(int d)
{

degree = d;
coef = new float [degree+1];

}

Representation 3

class Polynomial; // forward delcaration

class term {

friend Polynomial;
private:

float coef;
int exp;

};

// coefficient

// exponent

private:
static term termArray[MaxTerms];
static int free;

int Start, Finish;

term Polynomial:: termArray[MaxTerms];
Int Polynomial::free = 0; // location of next free location in

temArray

144

Array Representation of two

Polynomials

Represent the following two polynomials:
A(x) = 2x1000 + 1

B(x) = x4 + 10x3 + 3x2 + 1

A.Start A.Finish B.Start B.Finish free

coef 2 1 1 10 3 1

exp 1000 0 4 3 2 0

0 1 2 3 4 5 6

PolynomialAddition

Polynomial Polynomial:: Add(Polynomial B)
// return the sum ofA(x) (in *this) and B(x)
{

Polynomial C; int a = Start; int b = B.Start; C.Start = free; float c;
while ((a <= Finish) && (b <= B.Finish))

switch (compare(termArray[a].exp, termArray[b].exp)) {
case ‘=‘:

c = termArray[a].coef +termArray[b].coef;
if (c) NewTerm(c, termArray[a].exp);

a++; b++;
break;

case ‘<‘:
NewTerm(termArray[b].coef, termArray[b].exp);
b++;

case ‘>’:
NewTerm(termArray[a].coef, termArray[a].exp);
a++;

}

// end of switch and while

// add in remaining terms of A(x)
for (; a<= Finish; a++)

NewTerm(termArray[a].coef, termArray[a].exp);
// add in remaining terms of B(x)

for (; b<= B.Finish; b++)
NewTerm(termArray[b].coef, termArray[b].exp);

C.Finish = free – 1;

return C;

} // end ofAdd

147

Adding a new Term

void Polynomial::NewTerm(float c, int e)
//Add a new term to C(x)
{

if (free >= MaxTerms) {

cerr << “Toomany terms in polynomials”<< endl;
exit();

}

termArray[free].coef = c;
termArray[free].exp = e;
free++;

} // end of NewTerm

Disadvantages of Representing Polynomials

by Arrays

• What should we do when free is going to exceed
MaxTerms?
▫ Either quit or reused the space of unused polynomials.

But costly.

• If use a single array of terms for each polynomial,
it may alleviate the above issue but it penalizes
the performance of the program due to the need
of knowing the size of a polynomial beforehand.

Sparse Matrix and its
representations

• A matrix is a two-dimensional data object made of m rows

and n columns, therefore having total m x n values. If most of

the elements of the matrix have 0 value, then it is called a

sparse matrix.

• Why to use Sparse Matrix instead of simple matrix ?

• Storage: There are lesser non-zero elements than zeros and

thus lesser memory can be used to store only those elements.

• Computing time: Computing time can be saved by logically

designing a data structure traversing only non-zero elements..

150

• Example:
• Representing a sparse matrix by a 2D array leads to wastage of lots

of memory as zeroes in the matrix are of no use in most of the cases.

So, instead of storing zeroes with non-zero elements, we only store

non-zero elements. This means storing non-zero elements

with triples- (Row, Column, value).

• Sparse Matrix Representations can be done in many ways following

are two common representations:

• Array representation

• Linked list representation

151

152

• Method 1: Using Arrays
• 2D array is used to represent a sparse matrix in which there are

three rows named as

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is located

• Value: Value of the non zero element located at index –
(row,column)

• Method 2: Using Linked Lists
• In linked list, each node has four fields. These four fields are defined

as:

• Row: Index of row, where non-zero element is located

• Column: Index of column, where non-zero element is located

• Value: Value of the non zero element located at index –
(row,column)

• Next node: Address of the next node

•

153

DATA STRUCTURES AND APPLICATIONS

STRINGS – Its Operations

Strings

• Astring is a sequence of characters treated as a group

• We have already used some string literals:

▫ “filename”

▫ “output string”

• Strings are important in many programming contexts:

▫ names

▫ other objects (numbers, identifiers, etc.)

Outline

• Strings
▫ Representation in C
▫ String Literals
▫ String Variables
▫ String Input/Output

printf, scanf, gets, fgets, puts, fputs

▫ String Functions
strlen, strcpy, strncpy, strcmp, strncmp, strcat, strncat,

strchr, strrchr, strstr, strspn, strcspn, strtok
▫ Reading from/Printing to Strings

sprintf, sscanf

Strings in C

⚫No explicit type, instead strings are maintained as arrays of
characters

⚫Representing strings in C
⚫ stored in arrays of characters

⚫ array can be of any length

⚫ end of string is indicated by a delimiter, the zero character ‘\0’

"AString" A S t r i n g \0

String Literals

• String literal values are represented by sequences of
characters between double quotes (“)

• Examples
▫ “” - empty string

▫ “hello”

• “a” versus ‘a’

▫ ‘a’is a single character value (stored in 1 byte) as the
ASCII value for a

▫ “a” is an array with two characters, the first is a, the
second is the character value \0

Referring to String Literals

• String literal is an array, can refer to a single

character from the literal as a character

• Example:

printf(“%c”,”hello”[1]);

outputs the character ‘e’

• During compilation, C creates space for each string

literal (# of characters in the literal + 1)

▫ referring to the literal refers to that space (as if it is an

array)

Duplicate String Literals

• Each string literal in a C program is stored at a

different location

• So even if the string literals contain the same string,

they are not equal (in the == sense)

• Example:

▫ char string1[6] = “hello”;

▫ char string2[6] = “hello”;

▫ but string1 does not equal string2 (they are stored at

different locations)

String Variables

• Allocate an array of a size large enough to hold the
string (plus 1 extra value for the delimiter)

• Examples (with initialization):
char str1[6] = “Hello”;
char str2[] = “Hello”;
char *str3 = “Hello”;
char str4[6] = {‘H’,’e’,’l’,’l’,’o’,’\0’};

• Note, each variable is considered a constant in that
the space it is connected to cannot be changed
str1 = str2; /* not allowable, but we can copy the contents

of str2 to str1 (more later) */

Changing String Variables

• Cannot change space string variables connected to,

but can use pointer variables that can be changed

• Example:

char *str1 = “hello”; /* str1 unchangeable */

char *str2 = “goodbye”; /* str2 unchangeable */

char *str3; /* Not tied to space */

str3 = str1; /* str3 points to same space s1 connected to */

str3 = str2;

Changing String Variables (cont)

• Can change parts of a string variable

char str1[6] = “hello”;

str1[0] = ‘y’;
/* str1 is now “yello” */

str1[4] = ‘\0’;

/* str1 is now “yell” */

• Important to retain delimiter (replacing str1[5] in the
original string with something other than ‘\0’ makes a
string that does not end)

• Have to stay within limits of array

String Input

• Use %s field specification in scanf to read string
▫ ignores leading white space
▫ reads characters until next white space encountered
▫ C stores null (\0) char after last non-white space char
▫ Reads into array (no & before name, array is a pointer)

• Example:
char Name[11];
scanf(“%s”,Name);

• Problem: no limit on number of characters read (need
one for delimiter), if too many characters for array,
problems may occur

String Input (cont)

• Can use the width value in the field specification to

limit the number of characters read:

char Name[11];

scanf(“%10s”,Name);

• Remember, you need one space for the \0
▫ width should be one less than size of array

• Strings shorter than the field specification are read
normally, but C always stops after reading 10
characters

String Input (cont)

• Edit set input %[ListofChars]
▫ ListofChars specifies set of characters (called scan set)
▫ Characters read as long as character falls in scan set
▫ Stops when first non scan set character encountered
▫ Note, does not ignored leading white space
▫ Any character may be specified except]

▫ Putting ^ at the start to negate the set (any character
BUT list is allowed)

• Examples:
scanf(“%[-+0123456789]”,Number);
scanf(“%[^\n]”,Line); /* read until newline char */

String Output

• Use %s field specification in printf:

characters in string printed until \0 encountered

char Name[10] = “Rich”;

printf(“|%s|”,Name); /* outputs |Rich| */

• Can use width value to print string in space:

printf(“|%10s|”,Name); /* outputs | Rich| */

• Use - flag to left justify:

printf(“|%-10s|”,Name); /* outputs |Rich | */

Input/Output
Example

#include <stdio.h>

void main() {

char LastName[11];

char FirstName[11];

printf("Enter your name (last , first): ");

scanf("%10s%*[^,],%10s",LastName,FirstName);

printf("Nice to meet you %s %s\n",

FirstName,LastName);

}

Printing a String

Commands:

int puts(char *str)
prints the string pointed to by str to the screen
prints until delimiter reached (string better have a \0)
returns EOF if the puts fails

outputs newline if \n encountered (for strings read with gets or fgets)

int fputs(char *str, FILE *fp)
prints the string pointed to by str to the file connected to fp
fp must be an output connection
returns EOF if the fputs fails
outputs newline if \n encountered

Array of Strings

• Sometimes useful to have an array of string values

• Each string could be of different length (producing a

ragged string array)

• Example:

char *MonthNames[13]; /* an array of 13 strings */

MonthNames[1] = “January”; /* String with 8 chars */

MonthNames[2] = “February”; /* String with 9 chars */

MonthNames[3] = “March”; /* String with 6 chars */

etc.

Array of Strings Example

#include <stdio.h>

void main() {

char *days[7];

char TheDay[10];

int day;

days[0] = "Sunday";

days[1] = "Monday";

days[2] = "Tuesday";

days[3] = "Wednesday";

days[4] = "Thursday";

days[5] = "Friday";

days[6] = "Saturday";

Array of Strings Example

printf("Please enter a day: ");

scanf("%9s",TheDay);

day = 0;

while ((day < 7) && (!samestring(TheDay,days[day])))

day++;

if (day < 7)

printf("%s is day %d.\n",TheDay,day);

else

printf("No day %s!\n",TheDay);

}

Array of Strings Example

int samestring(char *s1, char *s2) {

int i;

/* Not same if not of same length */

if (strlen(s1) != strlen(s2))

return 0;

/* look at each character in turn */

for (i = 0; i < strlen(s1); i++)

/* if a character differs, string not same */

if (s1[i] != s2[i]) return 0;

return 1;

}

String Functions

• C provides a wide range of string functions for

performing different string tasks

• Examples

strlen(str) - calculate string length

strcpy(dst,src) - copy string at src to dst

strcmp(str1,str2) - compare str1 to str2

• Functions come from the utility library string.h

▫ #include <string.h> to use

String Length

Syntax: int strlen(char *str)

returns the length (integer) of the string argument

counts the number of characters until an \0 encountered

does not count \0 char

Example:

char str1 = “hello”;

strlen(str1) would return 5

Copying a String

Syntax:
char *strcpy(char *dst, char *src)

copies the characters (including the \0) from the source string

(src) to the destination string (dst)
dst should have enough space to receive entire string (if not,

other data may get written over)

if the two strings overlap (e.g., copying a string onto itself) the

results are unpredictable

return value is the destination string (dst)

char *strncpy(char *dst, char *src, int n)

similar to strcpy, but the copy stops after n characters

if n non-null (not \0) characters are copied, then no \0 is copied

String Comparison

Syntax:

int strcmp(char *str1, char *str2)

compares str1 to str2, returns a value based on the first

character they differ at:
less than 0

if ASCII value of the character they differ at is smaller for str1

or if str1 starts the same as str2 (and str2 is longer)

greater than 0

ifASCII value of the character they differ at is larger for str1

or if str2 starts the same as str1 (and str1 is longer)

0 if the two strings do not differ

String Comparison (cont)

strcmp examples:

strcmp(“hello”,”hello”) -- returns 0

strcmp(“yello”,”hello”) -- returns value > 0

strcmp(“Hello”,”hello”) -- returns value < 0

strcmp(“hello”,”hello there”) -- returns value < 0

strcmp(“some diff”,”some dift”) -- returns value < 0

expression for determining if two strings s1,s2 hold the

same string value:

!strcmp(s1,s2)

String Comparison (cont)

Sometimes we only want to compare first n chars:

int strncmp(char *s1, char *s2, int n)

Works the same as strcmp except that it stops at the nth

character

looks at less than n characters if either string is shorter

than n

strcmp(“some diff”,”some DIFF”) -- returns value > 0

strncmp(“some diff”,”some DIFF”,4) -- returns 0

strcpy/strcmp Example

#include <stdio.h>

#include <string.h>

void main() {

char fname[81];

char prevline[101] = "";

char buffer[101];

FILE *instream;

printf("Check which file: ");

scanf("%80s",fname);

if ((instream = fopen(fname,"r")) == NULL) {

printf("Unable to open file %s\n",fname);

exit(-1);

}

strcpy/strcmp Example
/* read a line of characters */

while (fgets(buffer,sizeof(buffer)-1,instream) != NULL) {

/* if current line same as previous */

if (!strcmp(buffer,prevline))

printf("Duplicate line: %s",buffer);

/* otherwise if the first 10 characters of the current

and previous line are the same */

else if (!strncmp(buffer,prevline,10))

printf(”Start the same:\n %s %s",prevline,buffer);

/* Copy the current line (in buffer) to the previous

line (in prevline) */

strcpy(prevline,buffer);

}

fclose(instream);

}

String Comparison (ignoring case)

Syntax:

int strcasecmp(char *str1, char *str2)

similar to strcmp except that upper and lower case

characters (e.g., ‘a’and ‘A’) are considered to be equal

int strncasecmp(char *str1, char *str2, int n)

version of strncmp that ignores case

String Concatenation

Syntax:

char *strcat(char *dstS, char *addS)

appends the string at addS to the string dstS (after dstS’s

delimiter)

returns the string dstS

can cause problems if the resulting string is too long to fit in dstS

char *strncat(char *dstS, char *addS, int n)

appends the first n characters of addS to dstS

if less than n characters in addS only the characters in addS

appended

always appends a \0 character

strcat Example#include <stdio.h>

#include <string.h>

void main() {

char fname[81];

char buffer[101];
char curraddress[201] = "";

FILE *instream;

int first = 1;

printf("Address file: ");

scanf("%80s",fname);

if ((instream = fopen(fname,"r")) == NULL) {

printf("Unable to open file %s\n",fname);

exit(-1);

}

strcat Example/* Read a line */
while (fgets(buffer,sizeof(buffer)-1,instream) != NULL) {

if (buffer[0] == '*') { /* End of address */

printf("%s\n",curraddress); /* Print address */

strcpy(curraddress,""); /* Reset address to “” */

first = 1;

}

else {

/*Add comma (if not first entry in address) */

if (first) first = 0; else strcat(curraddress,", ");

/*Add line (minus newline) to address */

strncat(curraddress,buffer,strlen(buffer)-1);

}

}

fclose(instream);

}

Searching for a Character/String

Syntax:
char *strchr(char *str, int ch)

returns a pointer (a char *) to the first occurrence of ch in
str

returns NULL if ch does not occur in str
can subtract original pointer from result pointer to

determine which character in array
char *strstr(char *str, char *searchstr)

similar to strchr, but looks for the first occurrence of the
string searchstr in str

char *strrchr(char *str, int ch)
similar to strchr except that the search starts from the end of

string str and works backward

String Spans (Searching)

Syntax:

int strspn(char *str, char *cset)
specify a set of characters as a string cset
strspn searches for the first character in str that is not part of

cset
returns the number of characters in set found before first

non-set character found

int strcspn(char *str, char *cset)
similar to strspn except that it stops when a character that is

part of the set is found

Examples:

strspn(“a vowel”,”bvcwl”) returns 2

strcspn(“a vowel”,”@,*e”) returns 5

Printing to a String

The sprintf function allows us to print to a string

argument using printf formatting rules

First argument of sprintf is string to print to, remaining

arguments are as in printf

Example:

char buffer[100];

sprintf(buffer,”%s, %s”,LastName,FirstName);

if (strlen(buffer) > 15)

printf(“Long name %s %s\n”,FirstName,LastName);

Reading from a String

The sscanf function allows us to read from a string

argument using scanf rules

First argument of sscanf is string to read from,

remaining arguments are as in scanf

Example:

char buffer[100] = “A10 50.0”;

sscanf(buffer,”%c%d%f”,&ch,&inum,&fnum);

/* puts ‘A’in ch, 10 in inum and 50.0 in fnum */

Module 2:

Stacks , Recursion and Queues

Data Structure and Applications –

18CS32

What is a stack?

⚫ It isan ordered group ofhomogeneous itemsof elements.

⚫ Elements are added to and removed from the top of the stack(the

most recently added itemsare at the top of the stack).

⚫ The last element to be added is the first to be removed (LIFO:

Last In, First Out).

Stack Specification

⚫Definitions:(providedby the user)

⚫MAX_ITEMS:Maxnumber of itemsthat mightbe on the stack

⚫ItemType:Data type of the items on the stack

⚫Operations

⚫MakeEmpty

⚫Boolean IsEmpty

⚫Boolean IsFull

⚫Push (ItemType newItem)

⚫Pop (ItemType& item) (or pop and top)

Push (ItemType newItem)

⚫Function:AddsnewItem to the top of

the stack.

⚫Preconditions:Stack has been initialized and

isnot full.

⚫Postconditions:newItemisat the top of

the stack.

Pop (ItemType& item)
⚫Function:RemovestopItem from stackand returns it in item.

⚫Preconditions:Stack hasbeen initialized and is not empty.

⚫Postconditions:Topelement hasbeen removed from stackand

item is a copy of the removed element.

Implementing a Stack
⚫At least three different ways to implement a stack

⚫array

⚫vector

⚫linked list

⚫Which method to use depends on the application
⚫what advantages and disadvantages does each

implementation have?

Implementing Stacks: Array

⚫Advantages

⚫best performance

⚫Disadvantage

⚫fixed size

⚫Basic implementation

⚫initially empty array

⚫field to record where the next data gets placed into

⚫if array is full, push() returns false

⚫ otherwise adds it into the correct spot

⚫if array is empty, pop() returns null

⚫ otherwise removes the next item in the stack

Stack Class (array based)

class StackArray {

private Object[] stack;

private int nextIn;

public StackArray(int size) {

stack = new Object[size];

nextIn = 0;}

public boolean push(Object data);

public Object pop();

public void clear();

public boolean isEmpty();

public boolean isFull();

}

push() Method (array
based)

// stack

public boolean push(Object data) {

if(nextIn == stack.length) { return false; }

is full

// add the element and then increment nextIn

stack[nextIn] = data;

nextIn++;

return true;

}

pop() Method (array
based)

public Object pop() {

if(nextIn == 0) { return null; } // stack is empty

// decrement nextIn and return the data

nextIn--;

Object data = stack[nextIn];

return data;

}

Stack
Implementation

#include "ItemType.h"
// Must be provided by the user of the class

// Contains definitions for MAX_ITEMS and ItemType

class StackType {
public:

StackType();
void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;
void Push(ItemType);
void Pop(ItemType&);

private:
int top;
ItemType items[MAX_ITEMS];

};

Stack Implementation
(cont.)

StackType::StackType()
{
top = -1;

}

void StackType::MakeEmpty()
{
top = -1;

}

bool StackType::IsEmpty() const
{
return (top == -1);

}

Stack Implementation
(cont.)

bool StackType::IsFull() const
{

return (top == MAX_ITEMS-1);
}

void StackType::Push(ItemType newItem)
{
top++;
items[top] = newItem;

}

void StackType::Pop(ItemType& item)
{

item = items[top];
top--;

}

Stack

⚫Tohevcoenrdiftiolnorwesultingfrom trying to push an element onto

a full stack.

if(!stack.IsFull())

stack.Push(item);

Stack underflow
⚫The condition resulting from trying to pop an empty stack.

if(!stack.IsEmpty())

stack.Pop(item);

Implementing stacks using
templates

⚫Templates allow the compiler to generate multiple versions

of a class type or a function byallowing parameterized types.

Implementing stacks using
templates

template<class ItemType>

class StackType {

public:

StackType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Push(ItemType);

void Pop(ItemType&);

private:

int top;

ItemType items[MAX_ITEMS];

};

(cont.)

Example using templates
// Client code

StackType<int> myStack;

StackType<float> yourStack;

StackType<StrType> anotherStack;

myStack.Push(35);

yourStack.Push(584.39);

The compiler generates distinct class types and gives its own internal

name to each of the types.

Function
templates

⚫The definitionsof themember functionsmust be
rewritten asfunctiontemplates.

template<class ItemType>

StackType<ItemType>::StackType()
{

top = -1;

}

template<class ItemType>
void StackType<ItemType>::MakeEmpty()
{
top = -1;

}

Function templates
template<class ItemT(ycpeo>nt.)
bool StackType<ItemType>::IsEmpty() const
{

return (top == -1);
}

template<class ItemType>
bool StackType<ItemType>::IsFull() const
{

return (top == MAX_ITEMS-1);
}

template<class ItemType>
void StackType<ItemType>::Push(ItemType newItem)
{

top++;

items[top] = newItem;
}

Function templates
(cont.)

template<class ItemType>

void StackType<ItemType>::Pop(ItemType& item)

{

item = items[top];

top--;

}

Implementing stacks using
dynamic array

allocation
template<class ItemType>

class StackType {

public:

StackType(int);

~StackType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Push(ItemType);

void Pop(ItemType&);

Implementing stacks using
dynamic array allocation

(cont.)
template<class ItemType>

StackType<ItemType>::StackType(int max)
{

maxStack = max;

top = -1;

items = new ItemType[max];
}

template<class ItemType>

StackType<ItemType>::~StackType()
{

delete [] items;
}

Example: postfix expressions

⚫Postfixnotation is another wayof writing arithmetic

expressions.

⚫In postfixnotation,the operator iswritten after the two

operands.

infix: 2+5 postfix: 2 5 +

⚫Expressionsare evaluatedfromleft to right.

⚫Precedencerulesandparenthesesare never needed!!

Example: postfix
expressions (cont.)

Postfixexpressions:
Algorithm using stacks

(cont.)

expressions
: Algorithm using
WHILE mosretianpcukt istems exist

Get an item

IF item is an operand

stack.Push(item)

ELSE

stack.Pop(operand2)

stack.Pop(operand1)

Compute result

stack.Push(result)

stack.Pop(result)

Write the body for a function that replaces each copy of an
item in a stack with another item. Use the following
specification. (this function is a client program).

ReplaceItem(StackType& stack, ItemType oldItem,

ItemType newItem)

Function: Replacesall occurrences of oldItem with newItem.

Precondition: stack has been initialized.

Postconditions: Each occurrence of oldItem in stack has been
replaced by newItem.

(Youmayuseanyof the member functions of the StackType, but
you may not assume any knowledge of how the stack is
implemented).

{

ItemType item;

StackType tempStack;

while (!Stack.IsEmpty()) {

Stack.Pop(item);

if (item==oldItem)

tempStack.Push(newItem);

else

tempStack.Push(item);

}

while (!tempStack.IsEmpty()) {

tempStack.Pop(item);

Stack.Push(item);

}

}

Stack

Stack

tempStack

oldItem = 2

newItem = 5

Module 2:

Queues

What is a
queue?

⚫It is an ordered group of homogeneous items of

elements.

⚫Queues have two ends:

⚫Elements are added at one end.

⚫Elements are removed from the other end.

⚫The element added first is also removed first

(FIFO: First In, First Out).

4 3 2 1

Queue Specification

⚫Definitions: (provided by the user)

⚫MAX_ITEMS: Max number of items that might be on the

queue

⚫ItemType: Data type of the items on the queue

• Operations

– MakeEmpty

– Boolean IsEmpty

– Boolean IsFull

– Enqueue (ItemType newItem)

– Dequeue (ItemType& item) (

Enqueue (ItemType newItem)

⚫Function:Adds newItem to the rear of the queue.

⚫Preconditions: Queue has been initialized and is not

full.

⚫Postconditions: newItem is at rear of queue.

Dequeue (ItemType& item)

⚫Function: Removes front item from queue and returns

it in item.

⚫Preconditions: Queue has been initialized and is not

empty.

⚫Postconditions: Front element has been removed from

queue and item is a copy of removed element.

Implementation
issues

⚫ Implement the queue as a circular structure.

⚫How do we know if a queue is full or empty?

⚫ Initialization of front and rear.

⚫Testing for a full or empty queue.

Make front point to the element preceding the
front element in the queue (one memory location

will be wasted).

Initialize front and
rear

Queue
Implementation

template<class ItemType>

class QueueType {

public:

QueueType(int);

QueueType();

~QueueType();

void MakeEmpty();

bool IsEmpty() const;

bool IsFull() const;

void Enqueue(ItemType);

void Dequeue(ItemType&);

Queue Implementation
(cont.)

template<class ItemType>

QueueType<ItemType>::QueueType(int max)
{

maxQue = max + 1;

front = maxQue - 1;

rear = maxQue - 1;

items = new ItemType[maxQue];
}

Queue Implementation
(cont.)

template<class ItemType>

QueueType<ItemType>::~QueueType()

{

delete [] items;

}

Queue Implementation
(cont.)

template<class ItemType>

void QueueType<ItemType>:: MakeEmpty()

{

front = maxQue - 1;

rear = maxQue - 1;

}

Queue Implementation

template<class It(ecmoTnypte.)>
bool QueueType<ItemType>::IsEmpty() const
{

return (rear == front);
}

template<class ItemType>
bool QueueType<ItemType>::IsFull() const
{

return ((rear + 1) % maxQue == front);
}

Queue Implementation
(cont.)

template<class ItemType>

void QueueType<ItemType>::Enqueue (ItemType

newItem)

{

rear = (rear + 1) % maxQue;

items[rear] = newItem;

}

Queue Implementation
(cont.)

template<class ItemType>

void QueueType<ItemType>::Dequeue (ItemType&

item)

{

front = (front + 1) % maxQue;

item = items[front];

}

Queue
overflow

⚫The condition resulting from trying to addan element onto a

fullqueue.

if(!q.IsFull())

q.Enqueue(item);

Queue
underflow

⚫The condition resulting from trying to remove anelement

from an empty queue.

if(!q.IsEmpty())

q.Dequeue(item);

Example: recognizing palindromes

⚫Apalindrome is a string that reads the same forward and

backward.

AblewasI ereI sawElba

⚫We will read the line of text into both a stack and a

queue.

⚫Compare the contents of the stackand the queue

character-by-character to see if theywould produce the

same stringof characters.

Example: recognizing palindromes

Example: recognizing
palindromes

#include <iostream.h>

#include <ctype.h>

#include "stack.h"

#include "queue.h“

int main()

{

StackType<char> s;

QueType<char> q;

char ch;

char sItem, qItem;

int mismatches = 0;

Example: recognizing
palindromes

while((!q.IsEmpty()) && (!s.IsEmpty())) {

s.Pop(sItem);

q.Dequeue(qItem);

if(sItem != qItem)

++mismatches;

}

if (mismatches == 0)

cout << "That is a palindrome" << endl;

else

cout << That is not a palindrome" << endl;

return 0;

}

Priority Queues

•Review the abstract data type Priority Queues

•Review different implementation options

Abstract Data Type: Priority Queue

⚫Apriority queue is a collectionof zero or more items,

⚫associated with each item isa priority

⚫Apriority queue has at least three operations

⚫insert(itemi) (enqueue) a newitem

⚫delete() (dequeue) the member with the highest

priority

⚫find() the item with the highest priority

⚫decreasePriority(item i, p) decrease the priority of ith item to

p

⚫Note that in a priority queue "first in firstout" doesnot applyin

general.

Priority Queues: Assumptions

⚫The highest priority can be either the minimumvalue of all the

items, or the maximum.

⚫Wewill assumethe highest priority is the minimum.

⚫Call the delete operation deleteMin().

⚫Call the find operation findMin().

⚫Assume the priority queue hasn members

Implementations

⚫Heap.

⚫In the worst case insert() is(lg n) and

⚫deleteMin() is(lg n)

⚫findMin() is(1)

⚫decreaseKey(i, p) is(lg n) 1,x

2,k3,e

8,d 7,i 9,z

Unsorted list: Array

1. Using an array arr.

⚫insert()adds the new item into next emptyposition in arr, in

(1).

⚫findMin() is(n) in the worst case

⚫deleteMin() is(n) in the worst case

⚫(n) to find the minimum item

⚫ and (1) to move the last itemto the position of the deleted element.

⚫DecreasePriority(i,p)– decrease priority of ith item stored at

arr[i] in(1)

4,x 8,a 1,b 9,c 7,y

1 2 3 4 50

Unsorted list: Linked List

2. Using a linked list.

⚫insert() in(1) with appropriate pointers.

⚫findMin()is(n) sincewe mayneed to search the whole list.

⚫deleteMin() is(n)

⚫ In the worst casewe mayneed to search the whole list,(n)

⚫Delete item,(1)

Sorted list: Circular Array

1.Acircular arrayA.

⚫insert() must maintain a sorted list.
⚫(n) in the worst case

⚫ For example:

The new itemneeds to be inserted after the itemwith the highest priority.
So n-1 itemshave to be moved to make room.

⚫findMin() is(1)

⚫ deleteMin() is(1) because the minimum itemis the first one in
the queue, and only the pointerto the first item needs to be
changed.

⚫DecreasePriority(i, p) – decrease priority of ith item, and
reinsert(n)

9,x 0,b 4,c 7,y

1 2 3 40

first

Sorted list: Linked List

2.Alinked list.

⚫insert() is(n)

⚫ since in the worst case the whole list must be searched sequentially to

find the location for insertion.

⚫findMin() is(1)

⚫deleteMin is(1)

⚫ since with appropriate pointers the first element ofa linked list can be

deleted in(1).

Priority Queue Implementations

Data

Structure

insert
worst case

DeleteMin
worst case

Heap (lg n) (lg n)

Unsorted
(array or linked list)

(1) (n)

Sorted
(array or
linked list)

(n) (1)

Backtracking- The Maze Problem

A short list of categories

⚫Algorithm types we will consider include:

⚫Simple recursive algorithms

⚫Backtracking algorithms

25

6

⚫Divide and conquer algorithms

⚫Dynamic programming algorithms

⚫Greedy algorithms

⚫Branch and bound algorithms

⚫Brute force algorithms

⚫Randomized algorithms

Backtracking

25

7

⚫Suppose you have to make a series of decisions,among various

choices, where

⚫Youdon’t haveenough information to know what to choose

⚫Each decision leads to a new set of choices

⚫Some sequence of choices (possibly more than one) may be a

solution to your problem

⚫Backtracking is a methodical way of trying out various

sequences of decisions, until you find one that “works”

Solving a maze

25

8

⚫Given a maze, find a path from start to finish

⚫At each intersection, you haveto decidebetween three or fewer
choices:

⚫Go straight

⚫Go left

⚫Go right

⚫You don’t have enough information to choose correctly

⚫Each choice leads to another set of choices

⚫One or more sequences of choices may(or maynot) lead to a solution

⚫Manytypes of mazeproblem can be solvedwith backtracking

Coloring a map
⚫You wish to color a map with

not more than four colors

⚫ red, yellow, green, blue

⚫Adjacent countries must be in

different colors

⚫Youdon’t haveenough information to choosecolors

⚫Eachchoiceleadsto another set of choices

⚫One or more sequences of choices may(or maynot) lead to a

solution

⚫Many coloring problems can be solved with backtracking

25

9

Solving a puzzle
⚫ In this puzzle, all holes but one

are filled with white pegs

⚫You can jump over one peg
with another

⚫ Jumped pegs are removed

⚫ The object is to remove all
but the last peg

⚫You don’t have enough information to jump correctly

⚫Each choice leads to another set of choices

⚫One or more sequences of choices may(or maynot) lead to a solution

⚫Manykindsof puzzlecan be solvedwith backtracking

26

0

Backtracking (animation)

start ?

dead end

dead end

?

?
?

dead end

?

success!

dead end

dead end

26

1

Terminology I

26

2

Atree is composed of nodes

There are three kinds of

nodes:

The (one) root node

Internal nodes

Leaf nodes

Backtracking can be thought of

as searching a tree for a

particular “goal” leaf node

Terminology II

parent

children

⚫Eachnon-leaf node in a tree is a parent of one or more other nodes

(its children)

⚫Eachnode in the tree, other than the root, hasexactly one parent

parent

26

3

children

Usually, however,

we draw our trees

downward, with

the root at the top

Real and virtual trees

26

4

⚫There is a type of data structure called a tree

⚫But we are not using it here

⚫ Ifwe diagram the sequence of choiceswe make, the diagram

looks like a tree

⚫In fact,we did just this a coupleof slidesago

⚫Our backtracking algorithm“sweepsout a tree”in “problem

space”

The backtracking algorithm

26

5

⚫Backtracking is reallyquite simple--we“explore”each node,

as follows:

⚫To “explore”node N:

1. If N is a goal node, return “success”

2. If N is a leaf node, return “failure”

3. For each child C of N,

1. Explore C

1. If C was successful, return “success”

4. Return “failure”

Full example: Map coloring

26

6

⚫The Four Color Theorem states that anymap on aplane can be

colored with no more than four colors, so that no two countries

with a common border are the same color

⚫For most maps, finding a legal coloring is easy

⚫For some maps, it canbe fairlydifficult to find a legal coloring

⚫Wewill develop a complete Javaprogram to solve this problem

Data structures

26

7

⚫We need a data structure that is easy to work with, and

supports:

⚫Setting a color for each country

⚫For each country, findingall adjacent countries

⚫We can do this with two arrays

⚫An array of “colors”, where countryColor[i] is the color of

the ith country

⚫Aragged array of adjacent countries, where map[i][j] is the

jth country adjacent to country i

⚫Example: map[5][3]==8 means the 3th country adjacent to

country 5 is country 8

Creating the map

0 1

4
2 3

6

26

8

5

int map[][];

void createMap() {

map = new int[7][];

map[0] = new int[] { 1, 4, 2, 5 };

map[1] = new int[] { 0, 4, 6, 5 };

map[2] = new int[] { 0, 4, 3, 6, 5 };

map[3] = new int[] { 2, 4, 6 };

map[4] = new int[] { 0, 1, 6, 3, 2 };

map[5] = new int[] { 2, 6, 1, 0 };

map[6] = new int[] { 2, 3, 4, 1, 5 };

}

Setting the initial colors

26

9

static final int NONE = 0;

static final int RED = 1;

static final int YELLOW = 2;

static final int GREEN = 3;

static final int BLUE = 4;

int mapColors[] = { NONE, NONE, NONE, NONE,

NONE, NONE, NONE };

The main program

27

0

(The name of the enclosing class is ColoredMap)

public static void main(String args[]) {

ColoredMap m = new ColoredMap();

m.createMap();

boolean result = m.explore(0, RED);

System.out.println(result);

m.printMap();

}

The backtracking method

27

1

boolean explore(int country, int color) {

if (country >= map.length) return true;

if (okToColor(country, color)) {

mapColors[country] = color;

for (int i = RED; i <= BLUE; i++) {

if (explore(country + 1, i)) return true;

}

}

return false;

}

Checking if a color can be used

27

2

boolean okToColor(int country, int color) {

for (int i = 0; i < map[country].length; i++) {

int ithAdjCountry = map[country][i];

if (mapColors[ithAdjCountry] == color) {

return false;

}

}

return true;

}

Printing the results

27

3

void printMap() {

for (int i = 0; i < mapColors.length; i++) {

System.out.print("map[" + i + "] is ");

switch (mapColors[i]) {

case NONE:

case RED:

System.out.println("none");

System.out.println("red");

break;

break;

caseYELLOW: System.out.println("yellow"); break;

case GREEN: System.out.println("green"); break;

case BLUE: System.out.println("blue"); break;

}

}

}

Summary

27

4

⚫Wewent through all the countries recursively, starting with

country zero

⚫At eachcountry we had to decide a color

⚫It hadto be different from all adjacent countries

⚫If we could not find a legal color, we reported failure

⚫If we could find a color,we used it and recurred with the next

country

⚫If we ran out of countries (colored themall), we reported

success

⚫When we returned from the topmost call, we were done

Recursion

What is recursion?

⚫Sometimes, the best way to
solve a problem is by solving
a smaller version of the exact
same problem first

⚫Recursion is a technique that
solves a problem by solving a
smaller problem of the same
type

int f(int x)

{

int y;

if(x==0)

return 1;

else {

y = 2 * f(x-1);

return y+1;

}

}

Problems defined recursively

⚫There are many problems whose solution canbe defined
recursively

Example: n factorial

n!= (recursive solution)
1

(n-1)!*n

if n = 0

if n > 0

n!=
1

1*2*3*…*(n-1)*n

if n = 0

if n > 0
(closed form solution)

Coding the factorial function
⚫Recursive implementation

int Factorial(int n)

{

if (n==0) // base case

return 1;

else

return n * Factorial(n-1);

}

Coding the factorial function (cont.)
⚫ Iterative implementation

int Factorial(int n)
{

int fact = 1;

for(int count = 2; count <= n; count++)
fact = fact * count;

return fact;

}

Another example:

n choose k (combinations)

⚫Given n things, how many different sets of size k can be
chosen?

, 1 < k < n (recursive solution)
k

n = n-1 + n-1

k k-1

, 1 < k < n (closed-formsolution)
k

n = n!
k!(n-k)!

with base cases:

n = n (k = 1), = 1 (k = n)
1

n

n

int Combinations(int n, int k)

{

if(k == 1) // base case 1

return n;

else if (n == k) // base case 2

return 1;

else

return(Combinations(n-1, k) + Combinations(n-1, k-1));

}

n choose k (combinations)

Key Components of a Recursive

Algorithm Design

1. What is a smaller identical problem(s)?

l Decomposition

2. How are the answers to smaller problems combined to form the

answer to the larger problem?

l Composition

3. Whichis the smallestproblem that canbe solvedeasily(without

further decomposition)?

l Base/stopping case

Examples in Recursion

⚫Usually quite confusing the first time

⚫Start with some simple examples

⚫recursive algorithms might not be best

⚫Later with inherently recursive algorithms

⚫harder to implement otherwise

Factorial (N!)

[for N > 1]⚫ N! = (N-1)! * N

⚫ 1! = 1

⚫ 3!

= 2! * 3

= (1! * 2) * 3

= 1 * 2 * 3

⚫ Recursive design:

⚫Decomposition: (N-1)!

⚫Composition: * N

⚫Base case: 1!

factorial
Method

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; // composition

else // base case

fact = 1;

return fact;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = factorial(2) * 3;

else

fact = 1;

return fact;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = factorial(2) * 3;

else

fact = 1;

return fact;

}

public static int factorial(int 2)

{

int fact;

if (n > 1)

fact = factorial(1) * 2;

else

fact = 1;

return fact;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = factorial(2) * 3;

else

fact = 1;

return fact;

}

public static int factorial(int 2)

{

int fact;

if (n > 1)

fact = factorial(1) * 2;

else

fact = 1;

return fact;

}

public static int factorial(int 1)

{

int fact;

if (n > 1)

fact = factorial(n - 1) * n;

else

fact = 1;

return fact;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = factorial(2) * 3;

else

fact = 1;

return fact;

}

public static int factorial(int 2)

{

int fact;

if (n > 1)

fact = factorial(1) * 2;

else

fact = 1;

return fact;

}

public static int factorial(int 1)

{

int fact;

if (n > 1)

fact = factorial(n - 1) * n;

else

fact = 1;

return 1;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = factorial(2) * 3;

else

fact = 1;

return fact;

}

public static int factorial(int 2)

{

int fact;

if (n > 1)

fact = 1 * 2;

else

fact = 1;

return fact;

}

public static int factorial(int 1)

{

int fact;

if (n > 1)

fact = factorial(n - 1) * n;

else

fact = 1;

return 1;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = factorial(2) * 3;

else

fact = 1;

return fact;

}

public static int factorial(int 2)

{

int fact;

if (n > 1)

fact = 1 * 2;

else

fact = 1;

return 2;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = 2 * 3;

else

fact = 1;

return fact;

}

public static int factorial(int 2)

{

int fact;

if (n > 1)

fact = 1 * 2;

else

fact = 1;

return 2;

}

public static int factorial(int 3)

{

int fact;

if (n > 1)

fact = 2 * 3;

else

fact = 1;

return 6;

}

Trace

(decompositi

on)

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; (composition)

else // base case

fact = 1;

return fact;

}

factorial(4)

factorial(3) 4

Trace

(decompositi

on)

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; (composition)

else // base case

fact = 1;

return fact;

}

factorial(4)

factorial(3) 4

factorial(2) 3

Trace

(decompositi

on)

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; (composition)

else // base case

fact = 1;

return fact;

}

factorial(4)

factorial(3) 4

factorial(2) 3

factorial(1) 2

Trace

(compositio

n)

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; (composition)

else // base case

fact = 1;

return fact;

}

factorial(4)

*

factorial(3) 4

*

factorial(2) 3

*

factorial(1)->1 2

Trace

(compositio

n)

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; (composition)

else // base case

fact = 1;

return fact;

}

factorial(4)

*

factorial(3) 4

*

factorial(2)->2 3

Trace

(compositio

n)

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; (composition)

else // base case

fact = 1;

return fact;

}

factorial(4)

*

factorial(3)->6 4

Trace

(compositio

n)

public static int factorial(int n)

{

int fact;

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; (composition)

else // base case

fact = 1;

return fact;

}

factorial(4)->24

Improved factorial
Method

public static int factorial(int n)

{

int fact=1; // base case value

if (n > 1) // recursive case (decomposition)

fact = factorial(n – 1) * n; // composition

// else do nothing; base case

return fact;

}

Fibonacci Numbers

⚫The Nth Fibonacci number is the sum of the previous two

Fibonacci numbers

⚫ 0, 1, 1, 2, 3, 5, 8, 13, …

⚫Recursive Design:

⚫Decomposition & Composition
⚫ fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

⚫Base case:
⚫ fibonacci(1) = 0

⚫ fibonacci(2) = 1

fibonacci Method

public static int fibonacci(int n)

{

int fib;

if (n > 2)

fib = fibonacci(n-1) + fibonacci(n-2);

else if (n == 2)

fib = 1;

else

fib = 0;

return fib;

}

Execution Trace (decomposition)

fibonacci(4)

fibonacci(3) fibonacci(2)

Execution Trace (decomposition)

fibonacci(4)

fibonacci(3) fibonacci(2)

fibonacci(1)fibonacci(2)

Execution Trace (composition)

fibonacci(1)->0fibonacci(2)->1

fibonacci(4)

+

fibonacci(3) fibonacci(2)

+

Execution Trace (composition)

fibonacci(4)

+

fibonacci(3)->1 fibonacci(2)->1

Execution Trace (composition)

fibonacci(4)->2

Remember:

Key to Successful Recursion

⚫if-else statement (or some other branching

statement)

⚫Some branches: recursive call

⚫"smaller" arguments or solve "smaller" versions of the

same task (decomposition)

⚫Combine the results (composition) [if necessary]

⚫Other branches: no recursive calls

⚫stopping cases or base cases

Towers of Hanoi

⚫ Move n (4) disks from poleAto pole C

⚫ such that a disk is never put on a smaller disk

AA BB

C

C

A B C

⚫ Move n (4) disks fromAto C

⚫ Move n-1 (3) disks fromAto B

⚫ Move 1 disk fromAto C

⚫ Move n-1 (3) disks from Bto C

Figure 2.19a and b
a) The initial state; b) move n - 1 disks from A to C

Figure 2.19c and d
c) move one disk from A to B; d) move n - 1 disks from C to B

Hanoi towers

public static void solveTowers(int count, char source,

char destination, char spare) {

if (count == 1) {

System.out.println("Move top disk from pole " + source +

" to pole " + destination);

}

else {

solveTowers(count-1, source, spare, destination); // X

solveTowers(1, source, destination, spare); // Y

solveTowers(count-1, spare, destination, source); // Z

} // end if

} // end solveTowers

Recursion tree:

The order of recursive calls that results from
solveTowers(3,A,B,C)

A B
C

A B

C

Figure 2.21a
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

A B C

Figure 2.21b
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

A B C

A B C

A B C

A B C

Figure 2.21c
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

A B C

A B C

A B C

A B C

Figure 2.21d
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

A B C

Figure 2.21e
Box trace of solveTowers(3, ‘A’, ‘B’, ‘C’)

Cost of Hanoi Towers

⚫How many moves is necessary to solve HanoiTowers

problem for N disks?

⚫moves(1) = 1

⚫moves(N) = moves(N-1) + moves(1) + moves(N-1)

⚫ i.e.

moves(N) = 2*moves(N-1) + 1

⚫Guess solution and showit’scorrect with Mathematical

Induction!

Ackerman's function

⚫ In computability theory, theAckermann function, named

after WilhelmAckermann, is one of the simplest and

earliest-discovered examples of a total computable function that

is not primitive recursive.All primitive recursive functions are

total and computable, but theAckermann function illustrates

that not all total computable functions are primitive recursive.

⚫ It’sa function with two arguments each of which canbe

assigned any non-negative integer.

⚫Ackermann function is defined as:

Ackermann algorithm:

Thank you

⦁ Linked lists

◦ Abstract data type (ADT)

⦁ Basic operations of linked lists

◦ Insert, find, delete, print, etc.

⦁ Variations of linked lists

◦ Circular linked lists

◦ Doubly linked lists

Head

⦁ A linked list is a series of connected nodes
⦁ Each node contains at least

◦ A piece of data (any type)

◦ Pointer to the next node in the list

⦁ Head: pointer to the first node

⦁ The last node points to NULL

A B C

node

A

data pointer

⦁ We use two classes: Node and List

⦁ Declare Node class for the nodes

◦ data: double-type data in this example

◦ next: a pointer to the next node in the list

double data; // data

Node* next; // pointer to next

class Node {

public:

};

⦁ Declare List, which contains
◦ head: a pointer to the first node in the list.

Since the list is empty initially, head is set to NULL

◦ Operations on List

class List {

public:

List(void) { head = NULL; }

~List(void);

// constructor

// destructor

bool IsEmpty() { return head == NULL; }

Node* InsertNode(int index, double x);

int FindNode(double x);

int DeleteNode(double x);

void DisplayList(void);

private:

Node* head;

};

⦁ Operations of List

◦ IsEmpty: determine whether or not the list is empty

◦ InsertNode: insert a new node at a particular
position

◦ FindNode: find a node with a given value

◦ DeleteNode: delete a node with a given value

◦ DisplayList: print all the nodes in the list

⦁ Node* InsertNode(int index, double x)

◦ Insert a node with data equal to x after the index’th

elements. (i.e., when index = 0, insert the node as the first element;

when index = 1, insert the node after the first element, and so on)

◦ If the insertion is successful, return the inserted node.

Otherwise, return NULL.

(If index is < 0 or > length of the list, the insertion will fail.)

⦁ Steps

1. Locate index’th element

e

2. Allocate memory for the new node

3. Point the new node to its successor

4. Point the new node’s predecessor to the new nod

newNode

index’th

element

⦁ Possible cases of InsertNode
1. Insert into an empty list

2. Insert in front

3. Insert at back

4. Insert in middle

⦁ But, in fact, only need to handle two cases

◦ Insert as the first node (Case 1 and Case 2)

◦ Insert in the middle or at the end of the list (Case 3
and Case 4)

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex =

Node* currNode =

1;

head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode =

newNode->data =

new Node;

x;

if (index == 0) {

newNode->next =

head =

}

else {

newNode->next =

head;

newNode;

currNode->next =

currNode->next;

newNode;

}

return newNode;

}

Try to locate
index’th node. If it

doesn’t exist,
return NULL.

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex =

Node* currNode =

1;

head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node* newNode =

newNode->data =

new Node;

x;

head;

newNode;

if (index == 0) {

newNode->next =

head =

}

else {

newNode->next =

currNode->next =

currNode->next;

newNode;

Create a new node

}

return newNode;

}

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

currIndex++;

}

if (index > 0 && currNode == NULL) return NULL;

Node;Node* newNode =

newNode->data =

new

x;

head;

newNode;

if (index == 0) {

newNode->next =

head =

}

else {

newNode->next = currNode->next;

currNode->next = newNode;

Insert as first element

head

newNode

}

return newNode;

}

Node* List::InsertNode(int index, double x) {

if (index < 0) return NULL;

int currIndex = 1;

Node* currNode = head;

while (currNode && index > currIndex) {

currNode = currNode->next;

NULL) return NULL;

currIndex++;

}

if (index > 0 && currNode ==

Node* newNode = new Node;

newNode->data = x;

head;

newNode;

if (index == 0) {

newNode->next =

head =

}

else {

newNode->next =

Insert after currNode

currNode

currNode->next =

currNode->next;

newNode;

}

return newNode;

} newNode

⦁ int FindNode(double x)

◦ Search for a node with the value equal to x in the list.

◦ If such a node is found, return its position. Otherwise,
return 0.

int List::FindNode(double x) {

Node* currNode

int currIndex

=

=

head;

1;

while (currNode && currNode->data != x) {

currNode = currNode->next;

currIndex++;

}

if (currNode) return currIndex;

return 0;

}

⦁ int DeleteNode(double x)

◦ Delete a node with the value equal to x from the list.

◦ If such a node is found, return its position. Otherwise,
return 0.

⦁ Steps

◦ Find the desirable node (similar to FindNode)

◦ Release the memory occupied by the found node

◦ Set the pointer of the predecessor of the found node to
the successor of the found node

⦁ Like InsertNode, there are two special cases
◦ Delete first node

◦ Delete the node in middle or at the end of the list

in

if (currNode) {

if (prevNode) {

prevNode->next =

delete currNode;

}

else {

head =

delete currNode;

}

return currIndex;

}

return 0;

}

List::DeleteNode(double x) { Try to find the node with
Node* prevNode =

Node* currNode =
int currIndex =

NULL;

head;
1;

its value equ al to x

while (currNode && currNode->data != x) {

prevNode = currNode;

currNode = currNode->next;

currIndex++;

}

currNode->next;

currNode->next;

int List::DeleteNode(double x) {

Node* prevNode =

Node* currNode =

int currIndex =

NULL;

head;

1;

while (currNode && currNode->data != x) {

=

=

prevNode

currNode

currIndex++;

currNode->next;

}

if (currNode) {

if (prevNode) {

prevNode->next =

delete currNode;

}

else {

head =

delete currNode;

}

return currIndex;

}

return 0;

}

currNode->next;

currNode;

currNode->next;

prevNode currNode

int List::DeleteNode(double x) {

Node* prevNode =

Node* currNode =

int currIndex =

NULL;

head;

1;

while (currNode && currNode->data != x) {

=

=

currNode;

currNode->next;

prevNode

currNode

currIndex++;

}

if (currNode) {

if (prevNode) {

prevNode->next =

delete currNode;

}

currNode->next;

else {

currNode->next;head =

delete currNode;

}

return currIndex;

} currNodehead

return 0;

}

⦁ void DisplayList(void)

◦ Print the data of all the elements

◦ Print the number of the nodes in the list

void List::DisplayList()

{

int num =

Node* currNode =

0;

head;

while (currNode != NULL){

cout << currNode->data << endl;

currNode = currNode->next;

num++;

}

cout << "Number of nodes in the list: " << num << endl;

}

⦁ ~List(void)

◦ Use the destructor to release all the memory used by the
list.

◦ Step through the list and delete each node one by one.

List::~List(void) {

Node* currNode = head, *nextNode = NULL;

while (currNode != NULL)

{

nextNode = currNode->next;

// destroy the current node

delete currNode;

currNode = nextNode;

}

}

int main(void)

{

List list;

list.InsertNode(0, 7.0);

list.InsertNode(1, 5.0);

// successful

// successful

list.InsertNode(-1, 5.0); // unsuccessful

list.InsertNode(0, 6.0); // successful

list.InsertNode(8, 4.0); // unsuccessful

// print all the elements

list.DisplayList();

> 0) cout << "5.0 found" << endl;

cout << "5.0 not found" << endl;

> 0) cout << "4.5 found" << endl;

cout << "4.5 not found" << endl;

if(list.FindNode(5.0)

else

if(list.FindNode(4.5)

else

list.DeleteNode(7.0);

list.DisplayList();

return 0;

}

6

7

5

Number of nodes in the list: 3

5.0 found

4.5 not found

6

5

Number of nodes in the list: 2

result

⦁ Circular linked lists
◦ The last node points to the first node of the list

A B C

Head
◦ How do we know when we have finished

traversing the list? (Tip: check if the pointer of
the current node is equal to the head.)

⦁ Doubly linked lists
◦ Each node points to not only successor but the

predecessor
◦ There are two NULL: at the first and last nodes in

the list
◦ Advantage: given a node, it is easy to visit its

predecessor. Convenient to traverse lists
backwards

A

Head

B C 

⦁ Linked lists are more complex to code and
manage than arrays, but they have some distinct
advantages.
◦ Dynamic: a linked list can easily grow and shrink in size.
• We don’t need to know how many nodes will be in the list.

They are created in memory as needed.

• In contrast, the size of a C++ array is fixed at compilation
time.

◦ Easy and fast insertions and deletions
• To insert or delete an element in an array, we need to copy

to temporary variables to make room for new elements or
close the gap caused by deleted elements.

• With a linked list, no need to move other nodes. Only need
to reset some pointers.

⦁ Follow the previous steps and we get

48 17 142head //

head 9

3

Step 1
Step 2

Step 3

⦁ Insertion at the top of the list

⦁ Insertion at the end of the list

⦁ Insertion in the middle of the list

Steps:

⦁ Create a Node

⦁ Set the node data Values

⦁ Connect the pointers

⦁ Follow the previous steps and we get

48 17 142head //

Step 1
Step 2

Step 3

⦁ Insertion at the top of the list

⦁ Insertion at the end of the list

⦁ Insertion in the middle of the list

Steps:

⦁ Create a Node

⦁ Set the node data Values

⦁ Break pointer connection

⦁ Re-connect the pointers

Step 1
Step 2

Step 3

Step 4

⦁ Introduction

⦁ Insertion Description

⦁ Deletion Description

⦁ Basic Node Implementation

⦁ Conclusion

⦁ Deleting from the top of the list

⦁ Deleting from the end of the list

⦁ Deleting from the middle of the list

⦁ Deleting from the top of the list

⦁ Deleting from the end of the list

⦁ Deleting from the middle of the list

Steps

⦁ Break the pointer connection

⦁ Re-connect the nodes

⦁ Delete the node

4 17

head

426

4 17

head

426

4 17

head

42

⦁ Deleting from the top of the list

⦁ Deleting from the end of the list

⦁ Deleting from the middle of the list

Steps

⦁ Break the pointer connection

⦁ Set previous node pointer to NULL

⦁ Delete the node

4 17

head

426

4 17

head

426

4 176

head

⦁ Deleting from the top of the list

⦁ Deleting from the end of the list

⦁ Deleting from the middle of the list

Steps

⦁ Set previous Node pointer to next node

⦁ Break Node pointer connection

⦁ Delete the node

4 17 42

head

4 17

head

42

4

head

42

The following code is written in C++:

Struct Node

{

int data;
struct

Node *next;
“pointer”

//any type of data could be another

//this is an important piece of code

};

1

⦁ In a linked representation of a binary
tree, the number of null links (null
pointers) are actually more than
non-null pointers.

⦁ Consider the following binary tree:

⦁ In above binary tree, there are 7 null pointers
& actual 5 pointers.

⦁ In all there are 12 pointers.
⦁ We can generalize it that for any binary tree

with n nodes there will be (n+1) null pointers
and 2n total pointers.

⦁ The objective here to make effective use of
these null pointers.

⦁ A. J. perils & C. Thornton jointly proposed idea
to make effective use of these null pointers.

⦁ According to this idea we are going to replace
all the null pointers by the appropriate pointer
values called threads.

⦁ And binary tree with such pointers are called
threaded tree.

⦁ In the memory representation of a threaded
binary tree, it is necessary to distinguish
between a normal pointer and a thread.

 Therefore we have an alternate node
representation for a threaded binary tree
which contains five fields as show bellow:

⦁ Also one may choose a one-way threading or a
two-way threading.

⦁ Here, our threading will correspond to the in
order traversal of T.

⦁ Accordingly, in the one way threading of T, a
thread will appear in the right field of a node

and will point to the next node in the in-order
traversal of T.

⦁ See the bellow example of one-way in-order
threading.

Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

⦁ In the two-way threading of T.

⦁ A thread will also appear in the left field of a
node and will point to the preceding node in

the in-order traversal of tree T.

⦁ Furthermore, the left pointer of the first node
and the right pointer of the last node (in the

in-order traversal of T) will contain the null
value when T does not have a header node.

⦁ Bellow figure show two-way in-order
threading.

⦁ Here, right pointer=next node of in-order
traversal and left pointer=previous node of

in-order traversal

⦁ Inorder of bellow tree is: D,B,F,E,A,G,C,L,J,H,K

⦁ Again two-way threading has left pointer of
the first node and right pointer of the last
node (in the inorder traversal of T) will
contain the null value when T will point to
the header nodes is called two-way threading
with header node threaded binary tree.

⦁ Bellow figure to explain two-way threading with
header node.

⦁ Bellow example of link
representation of threading binary
tree.⦁ In-order traversal of bellow tree:
G,F,B,A,D,C,E

⦁ Advantages of threaded binary

tree:⦁ Threaded binary trees have numerous
advantages over non-threaded binary trees
listed as below:
◦ The traversal operation is more faster than that of its

unthreaded version, because with threaded binary tree
non-recursive implementation is possible which can
run faster and does not require the botheration of
stack management.

⦁ Advantages of threaded binary

tree:

◦ The second advantage is more understated with a
threaded binary tree, we can efficiently determine the
predecessor and successor nodes starting from any
node. In case of unthreaded binary tree, however,
this task is more time consuming and difficult. For
this case a stack is required to provide upward
pointing information in the tree whereas in a
threaded binary tree, without having to include the
overhead of using a stack mechanism the same can
be carried out with the threads.

⦁ Advantages of threaded binary

tree:

◦ Any node can be accessible from any other node.
Threads are usually more to upward whereas links
are downward. Thus in a threaded tree, one can move
in their direction and nodes are in fact circularly
linked. This is not possible in unthreaded counter
part because there we can move only in downward
direction starting from root.

◦ Insertion into and deletions from a threaded tree are
although time consuming operations but these are
very easy to implement.

⦁ Disadvantages of threaded binary

tree:

◦ Insertion and deletion from a threaded tree are very time consuming operation
compare to non-threaded binary tree.

◦ This tree require additional bit to identify the
threaded link.

TREES

⦁ Property1: each node can have up to two
successor nodes (children)
◦ The predecessor node of a node is called its parent
◦ The "beginning" node is called the root (no parent)
◦ A node without children is called a leaf

 20

 21

 22

 23

Owner

Jake

ChefManager

Brad Carol

Waitress

Joyce

Waiter

Chris

HelperCook

Max Len

A Tree Has a Root Node

23

ROOT NODE

Owner

Jake

ChefManager

Brad Carol

HelperWaitress

Joyce

Waiter

Chris

Cook

Max Len

Leaf nodes have no children

24

LEAF NODES

⦁ Property2: a unique path exists from the
root to every other node

⦁ Ancestor of a node: any node on the path from
the root to that node

⦁ Descendant of a node: any node on a path from
the node to the last node in the path

⦁ Level (depth) of a node: number of edges in the
path from the root to that node

⦁ Height of a tree: number of levels (warning:
some books define it as #levels - 1)

Owner

Jake

ChefManager

Brad Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

A Tree Has Levels

27

LEVEL 0

Owner

Jake

ChefManager

Brad Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

Level One

28

LEVEL 1

Owner

Jake

ChefManager

Brad Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

Level Two

29

LEVEL 2

Owner

Jake

ChefManager

Brad Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

A Subtree

30

LEFT SUBTREE OFROOT NODE

Owner

Jake

ChefManager

Brad Carol

Waitress

Joyce

Waiter

Chris

Cook

Max

Helper

Len

Another Subtree

31

RIGHT SUBTREE

OFROOT NODE

ni
n1

n1 x 1
x1

x0 1 x  ... x  x 
i0

N  20

l=0

 21  ... 2h1  2h 1
l=1 l=h-1

using the geometric series:

l 2l

⦁ The m is Nax height of a tree with N nodes
e as a linked list)

⦁ The min height of a tree with N nodes is

log(N+1)

2h 1 N

 2h  N 1

(sam h  log(N 1) O(log N)

(1) Start at the root

(2) Search the tree level by level, until you
find the element you are searching for

(O(N) time in worst case)

Is this better than searching a linked list?

No ---> O(N)

⦁ Binary Search Tree Property: The value stored
at a node is greater than the value stored at
its left child and less than the value stored at
its right child

⦁ Thus, the value stored at the root of a subtree

is greater than any value in its left subtree
and less than any value in its right subtree!!

(1) Start at the root

(2)Compare the value of the item you are
searching for with the value stored at the
root

(3)If the values are equal, then item found;
otherwise, if it is a leaf node, then not found

(4) If it is less than the value stored at the
root, then search the left subtree

(5)If it is greater than the value stored at
the root, then search the right subtree
(6)Repeat steps 2-6 for the root of the
subtree chosen in the previous step 4 or 5

Is this better than searching a linked list?

Yes !! ---> O(logN)

template<class ItemType>
struct TreeNode {

ItemType info;
TreeNode* left;
TreeNode* right; };

#include <fstream.h>

template<class ItemType>
struct TreeNode;

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDER};

template<class ItemType>

class TreeType {
public:
TreeType();
~TreeType();
TreeType(const TreeType<ItemType>&);

void operator=(const TreeType<ItemType>&);
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
int NumberOfNodes() const; (continues)

void RetrieveItem(ItemType&, bool& found);
void InsertItem(ItemType);
void DeleteItem(ItemType);
void ResetTree(OrderType);
void GetNextItem(ItemType&, OrderType, bool&);
void PrintTree(ofstream&) const;

private:
TreeNode<ItemType>* root;

};

};

(cont.)

⦁ Recursive implementation
#nodes in a tree =

#nodes in left subtree + #nodes in right
subtree + 1

⦁ What is the size factor?
Number of nodes in the tree we are examining

⦁ What is the base case?
The tree is empty

⦁ What is the general case?
CountNodes(Left(tree)) + CountNodes(Right(tree))
+ 1

template<class ItemType>
int TreeType<ItemType>::NumberOfNodes() const
{
return CountNodes(root);

}

template<class ItemType>
int CountNodes(TreeNode<ItemType>* tree)
{
if (tree == NULL)
return 0;

else
return CountNodes(tree->left) + CountNodes(tree->right) + 1;

}

Let’s consider the first few steps:

⦁ What is the size of the problem?

Number of nodes in the tree we are examining

⦁ What is the base case(s)?

1) When the key is found

2) The tree is empty (key was not found)

⦁ What is the general case?
Search in the left or right subtrees

template <class ItemType>
void TreeType<ItemType>:: RetrieveItem(ItemType& item,bool& found)
{

Retrieve(root, item, found);
}

template<class ItemType>
void Retrieve(TreeNode<ItemType>* tree,ItemType& item,bool& found)
{

if (tree == NULL) // base case 2
found = false;

else if(item < tree->info)
Retrieve(tree->left, item, found);
else if(item > tree->info)
Retrieve(tree->right, item, found);
else { // base case 1
item = tree->info;
found = true;

}

}

⦁ Use the
binary
search tree
property to
insert the
new item at
the correct
place

Function

InsertItem

(cont.)

•

Insert 11

⦁ What is the size of the problem?

Number of nodes in the tree we are examining

⦁ What is the base case(s)?

The tree is empty

⦁ What is the general case?

Choose the left or right subtree

template<class ItemType>
void TreeType<ItemType>::InsertItem(ItemType item)
{
Insert(root, item);
}

template<class ItemType>
void Insert(TreeNode<ItemType>*& tree, ItemType item)
{
if(tree == NULL) { // base case
tree = new TreeNode<ItemType>;
tree->right = NULL;
tree->left = NULL;
tree->info = item;

}
else if(item < tree->info)
Insert(tree->left, item);
else
Insert(tree->right, item);

}

Insert 11

⦁ Yes, certain orders produce very unbalanced
trees!!

⦁ Unbalanced trees are not desirable because
search time increases!!

⦁ There are advanced tree structures (e.g.,"red-
black trees") which guarantee balanced trees

Does the

order of

inserting

elements

into a tree

matter?

(cont.)

⦁ First, find the item; then, delete it

⦁ Important: binary search tree property
must be preserved!!

⦁ We need to consider three different cases:

(1) Deleting a leaf

(2) Deleting a node with only one child

(3) Deleting a node with two children

⦁ Find predecessor (it is the rightmost node
in the left subtree)

⦁ Replace the data of the node to be deleted
with predecessor's data

⦁ Delete predecessor node

⦁ What is the size of the problem?

Number of nodes in the tree we are examining

⦁ What is the base case(s)?

Key to be deleted was found

⦁ What is the general case?

Choose the left or right subtree

template<class ItemType>
void TreeType<ItmeType>::DeleteItem(ItemType item)
{
Delete(root, item);
}

template<class ItemType>
void Delete(TreeNode<ItemType>*& tree, ItemType item)
{

if(item < tree->info)
Delete(tree->left, item);
else if(item > tree->info)
Delete(tree->right, item);
else
DeleteNode(tree);

}

template <class ItemType>
void DeleteNode(TreeNode<ItemType>*& tree)
{

ItemType data;
TreeNode<ItemType>* tempPtr;

tempPtr = tree;
if(tree->left == NULL) { //right child
tree = tree->right;
delete tempPtr;

}

}

2 children

0 or 1 child

}

else if(tree->right == NULL) { // left child
tree = tree->left;
delete tempPtr; 0 or 1 child

}

else {
GetPredecessor(tree->left, data);
tree->info = data;
Delete(tree->left, data);

template<class ItemType>

void GetPredecessor(TreeNode<ItemType>* tree, ItemType& data)

{

while(tree->right != NULL)

tree = tree->right;

data = tree->info;

}

There are mainly three ways to traverse a
tree:

Inorder Traversal

Postorder Traversal

Preorder Traversal

66

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

Visit left subtree first Visit right subtree last

⦁ Visit the nodes in the left subtree, then
visit the root of the tree, then visit the
nodes in the right subtree

Inorder(tree)

If tree is not NULL
Inorder(Left(tree))
Visit Info(tree)
Inorder(Right(tree))

(Warning: "visit" means that the algorithm
does something with the values in the
node, e.g., print the value)

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

‘J’

68

Visit left subtree first Visit right subtree second

Postorder

⦁ Visit the nodes in the left subtree first,
then visit the nodes in the right subtree,
then visit the root of the tree

Postorder(tree)
If tree is not NULL

Postorder(Left(tree))

Postorder(Right(tree))

Visit Info(tree)

‘J’

‘E’

‘A’ ‘H’

‘T’

‘M’ ‘Y’

tree

70

Visit left subtree second Visit right subtree last

⦁ Visit the root of the tree first, then visit the
nodes in the left subtree, then visit the
nodes in the right subtree

Preorder(tree)

If tree is not NULL
Visit Info(tree)

Preorder(Left(tree))

Preorder(Right(tree))

⦁ We use "inorder" to print out the node values

⦁ Why?? (keys are printed out in

ascending

order!!)
⦁ Hint: use binary search trees for sorting !!

void TreeType::PrintTree(ofstream& outFile)
{
Print(root, outFile);
}

template<class ItemType>
void Print(TreeNode<ItemType>* tree, ofstream& outFile)
{

if(tree != NULL) {
Print(tree->left, outFile);
outFile << tree->info;
Print(tree->right, outFile);

}
}

(see textbook for overloading <<
and >>)

template<class ItemType>

TreeType<ItemType>::TreeType()

{

root = NULL;

}

⦁ Delete the tree in a "bottom-up" fashion
⦁ Postorder traversal is appropriate for this

!!

TreeType::~TreeType()

Destroy(root);
{

}

void Destroy(TreeNode<ItemType>*& tree)
{
if(tree != NULL) {

Destroy(tree->left);
Destroy(tree->right);
delete tree;

}
}

template<class ItemType>
TreeType<ItemType>::TreeType(const TreeType<ItemType>&

originalTree)
{

CopyTree(root, originalTree.root);
}

template<class ItemType)
void CopyTree(TreeNode<ItemType>*& copy,

{

TreeNode<ItemType>* originalTree)

if(originalTree == NULL)
copy = NULL;

else {
copy = new TreeNode<ItemType>;
copy->info = originalTree->info;
CopyTree(copy->left, originalTree->left);
CopyTree(copy->right, originalTree->right); preorder

}
}

⦁ The user is allowed to specify the tree
traversal order

⦁ For efficiency, ResetTree stores in a queue
the results of the specified tree traversal

⦁ Then, GetNextItem, dequeues the node
values from the queue

enum OrderType {PRE_ORDER,
IN_ORDER,

POST_ORDER};
template<class ItemType>
class TreeType {
public:
// same as before

private:
TreeNode<ItemType>* root;

QueType<ItemType> preQue;
QueType<ItemType> inQue;
QueType<ItemType> postQue;

};

new private data

template<class ItemType>
void PreOrder(TreeNode<ItemType>*,

QueType<ItemType>&);

template<class ItemType>
void InOrder(TreeNode<ItemType>*,

QueType<ItemType>&);

template<class ItemType>

void PostOrder(TreeNode<ItemType>*,
QueType<ItemType>&);

template<class ItemType>
void PreOrder(TreeNode<ItemType>tree,

QueType<ItemType>& preQue)
{
if(tree != NULL) {
preQue.Enqueue(tree->info);
PreOrder(tree->left, preQue);
PreOrder(tree->right, preQue);

}
}

template<class ItemType>
void InOrder(TreeNode<ItemType>tree,

QueType<ItemType>& inQue)
{
if(tree != NULL) {
InOrder(tree->left, inQue);
inQue.Enqueue(tree->info);
InOrder(tree->right, inQue);

}
}

template<class ItemType>

void PostOrder(TreeNode<ItemType>tree,

QueType<ItemType>& postQue)

{

if(tree != NULL) {

PostOrder(tree->left, postQue);

PostOrder(tree->right, postQue);

postQue.Enqueue(tree->info);

}

}

template<class ItemType>
void TreeType<ItemType>::ResetTree(OrderType order)
{
switch(order) {
case PRE_ORDER: PreOrder(root, preQue);

break;
case IN_ORDER: InOrder(root, inQue);

break;
case POST_ORDER: PostOrder(root, postQue);

break;
}

}

template<class ItemType>
void TreeType<ItemType>::GetNextItem(ItemType& item,

{
OrderType order, bool& finished)

finished = false;
switch(order) {
case PRE_ORDER: preQue.Dequeue(item);

if(preQue.IsEmpty())
finished = true;
break;

case IN_ORDER: inQue.Dequeue(item);
if(inQue.IsEmpty())
finished = true;
break;

case POST_ORDER: postQue.Dequeue(item);
if(postQue.IsEmpty())
finished = true;

break;
}

}

⦁ See textbook

Big-O Comparison

Operation
Binary

Search Tree

Array-
based List

Linked

List

Constructor O(1) O(1) O(1)

Destructor O(N) O(1) O(N)

IsFull O(1) O(1) O(1)

IsEmpty O(1) O(1) O(1)

RetrieveItem O(logN) O(logN) O(N)

InsertItem O(logN) O(N) O(N)

DeleteItem O(logN) O(N) O(N)

⦁ 1-3, 8-18, 21, 22, 29-32

1

Definition

 Agraph G consists of two sets

– a finite, nonempty set of verticesV(G)

– a finite, possible empty set of edges E(G)

– G(V,E) represents a graph

 An undirected graph is one in which the pair of

vertices in a edge is unordered, (v0, v1) = (v1,v0)

 A directed graph is one in which each edge is a

directed pair of vertices, <v0, v1> != <v1,v0>

tail head

2

Examples for Graph

0 0

1

0

3

1 2

4 5 6

G2

3

2

G3

E(G1)={(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)}

E(G2)={(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)}

E(G3)={<0,1>,<1,0>,<1,2>}

complete undirected graph: n(n-1)/2 edges

complete directed graph: n(n-1) edges

1 2

3

G1

complete graph

V(G1)={0,1,2,3}

V(G2)={0,1,2,3,4,5,6}

V(G3)={0,1,2}

incomplete graph

Complete Graph

4

 A complete graph is a graph that has the

maximum number of edges

– for undirected graph with n vertices, the maximum

number of edges is n(n-1)/2

– for directed graph with n vertices, the maximum

number of edges is n(n-1)

– example: G1 is a complete graph

Adjacent and Incident

5

 If (v0, v1) is an edge in an undirected graph,

– v0 and v1 are adjacent

– The edge (v0, v1) is incident on vertices v0 and v1

 If <v0, v1> is an edge in a directed graph

– v0 is adjacent to v1, and v1 is adjacent from v0

– The edge <v0, v1> is incident on v0 and v1

0 2

1

(a)

2

1 3

(b)

*Figure 6.3:Example of a graph with feedback loops and a

multigraph (p.260)

0

self edge multigraph:

multiple occurrences

of the same edge

 Asubgraph of G is a graph G’such that V(G’)

is a subset of V(G) and E(G’) is a subset of E(G)

 Apath from vertex vp to vertex vq in a graph G,

is a sequence of vertices, vp, vi1, vi2, ..., vin, vq,

such that (vp, vi1), (vi1, vi2), ..., (vin, vq) are edges

in an undirected graph

 The length of a path is the number of edges on

it

8

0 0

1 2 3

1 2 0

1 2

3

(iv)(i) (ii) (iii)

(a) Some of the subgraph of G1

0 0

1

0

1

0

1

(i) (ii)

2

(iv)

2

(iii)

(b) Some of the subgraph of G3

分開

單一

0

1 2

3

G1

0

1

2

G3

 A simple path is a path in which all vertices,

except possibly the first and the last, are distinct

 Acycle is a simple path in which the first and

the last vertices are the same

 In an undirected graph G, two vertices, v0 and v1

are connected if there is a path in G from v0 to v1

 An undirected graph is connected if, for every

pair of distinct vertices vi, vj, there is a path

from vi to vj

9

0

1 2

3

G1

0

1 2

3 4 5 6

G2

tree (acyclic graph)

10

connected

 A connected component of an undirected graph

is a maximal connected subgraph.

 Atree is a graph that is connected and acyclic.

 Adirected graph is strongly connected if there

is a directed path from vi to vj and also

from vj to vi.

 Astrongly connected component is a maximal

subgraph that is strongly connected.
11

1

0

2

3

4

5

6

H1 H2

7

G4 (not connected)

*Figure 6.5: A graph with two connected components (p.262)

connected component (maximal connected subgraph)

12

0

1

2

0

1

2

G3

not strongly connected

*Figure 6.6: Strongly connected components of G3 (p.262)

strongly connected component

13

(maximal strongly connected subgraph)

Degree

14

 The degree of a vertex is the number of edges
incident to that vertex

 For directed graph,
– the in-degree of a vertex v is the number of edges

that have v as the head

– the out-degree of a vertex v is the number of edges
that have v as the tail

– if di is the degree of a vertex i in a graph G with n
vertices and e edges, the number of edges is

n 1

e  (id) / 2
0

undirected graph

degree
0

1

2
1

3

2

3

3

1

4 5

1 G2 1

6

1

directed graph

in-degree

out-degree

0

1

2

G3

in:1, out: 1

in: 1, out: 2

in: 1, out: 0

3

0

1

3

2 3

15

G 3

3

ADT for Graph

16

structure Graph is

objects: a nonempty set of vertices and a set of undirected edges, where each

edge is a pair of vertices

functions: for all graph  Graph, v, v1 and v2  Vertices

Graph Create()::=return an empty graph

Graph InsertVertex(graph, v)::= return a graph with v inserted. v has no

incident edge.

Graph InsertEdge(graph, v1,v2)::= return a graph with new edge

between v1 and v2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges

incident to it are removed

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2)

is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE

else return FALSE

List Adjacent(graph,v)::= return a list of all vertices that are adjacent to v

Graph Representations

17

 Adjacency Matrix

 Adjacency Lists

Adjacency Matrix

18

 Let G=(V,E) be a graph with n vertices.

 The adjacency matrix of G is a two-dimensional

n by n array, say adj_mat

 If the edge (vi, vj) is in E(G), adj_mat[i][j]=1

 If there is no such edge in E(G), adj_mat[i][j]=0

 The adjacency matrix for an undirected graph is

symmetric; the adjacency matrix for a digraph

need not be symmetric

19

Examples for Adjacency Matrix

1



1



0
1

0

1

0

0

0

1


0
0
1

0


0

0

0

1 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1

0

0

0


0

1


0


1



0


0


0
G1

G2

G4

0

1 2

 
1 1

3
0 1 1 1

0 1

1 0

1 1 1 0

1

2

0

0
2 1

3

4

5

6

7

symmetric

undirected: n2/2

directed: n2

Merits of Adjacency Matrix

20

 From the adjacency matrix, to determine the

connection of vertices is easy

 The degree of a vertex is adj_ mat[i][j]
j0

 For a digraph, the row sum is the out_degree,

while the column sum is the in_degree

n1

ind(vi)   A[j,i]
j0

outd (vi)   A[i, j]
j0

n1 n1

Data Structures for Adjacency Lists

21

#define MAX_VERTICES 50

typedef struct node *node_pointer;

typedef struct node {

int vertex;

struct node *link;

};

node_pointer graph[MAX_VERTICES];

int n=0; /* vertices currently in use *

Each row in adjacency matrix is represented as an adjacency list.

0

1

2

3

0

1

2

0

1

2

3

4

5

6

7

1 2 3

0 2 3

0 1 3

0 1 2

G1

1

0 2

G3

1 2

0 3

0 3

1 2

5

4 6

5 7

6

G4

0

1 2

3

0

1

2

An undirected graph with n vertices and e edges ==> nCHAhPeTEaRd6nodes and 2e list nod2e2s

1

0

2

3

4

5

6

7

degree of a vertex in an undirected graph

–# of nodes in adjacency list

# of edges in a graph

–determined in O(n+e)

out-degree of a vertex in a directed graph

–# of nodes in its adjacency list

in-degree of a vertex in a directed graph

–traverse the whole data structure

23

[0] 9 [8] 23 [16] 2

[1] 11 0 [9] 1 4 [17] 5

[2] 13 [10] 2 5 [18] 4

[3] 15 1 [11] 0 [19] 6

[4] 17 [12] 3 6 [20] 5

[5] 18 2 [13] 0 [21] 7

[6] 20 [14] 3 7 [22] 6

[7] 22 3 [15] 1

1

0

2

3

4

5

6

7

node[0] … node[n-1]: starting point for vertices

node[n]: n+2e+1

node[n+1] … node[n+2e]: head node of edge

24







0

1

2

1 NULL

0 NULL

1 NULL

0

1

2

Determine in-degree of a vertex in a fast way.

25

CHAPTER 6 26

tail head column link for head row link for tail

0 1 2

0 0 1 NULL NULL

1 1 0 NULL 1 2 NULL NULL

2 NULL

0

1

2

0

27

1

0

1
1

 0 
0 0 0

 3  2 NULL1 0

 2  3 NULL0 1

 3  1 NULL0 2

 2  0 NULL1 3

Order is of no significance.

headnodes vertax link

0

1 2

3 28

Some Graph Operations

29

 Traversal

Given G=(V,E) and vertex v, find all wV,

such that w connects v.

– Depth First Search (DFS)

preorder tree traversal

– Breadth First Search (BFS)

level order tree traversal

 Connected Components

 Spanning Trees

*Figure 6.19:Graph G and its adjacency

lists (p.274)

depth first search: v0, v1, v3, v7,

v4, v5, v2, v6

30

breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

Depth First Search

31

dfs(w->vertex);

}

#define FALSE 0
#define TRUE 1
short int visited[MAX_VERTICES];

void dfs(int v)

{

node_pointer w;

visited[v]= TRUE;

printf(“%5d”, v);

for (w=graph[v]; w; w=w->link)

if (!visited[w->vertex])

Data structure

adjacency list: O(e)

adjacency matrix: O(n2)

Breadth First Search

32

typedef struct queue *queue_pointer;

typedef struct queue {

int vertex;

queue_pointer link;

};

void addq(queue_pointer *,

queue_pointer *, int);

int deleteq(queue_pointer *);

Breadth First Search
(Continued)

33

void bfs(int v)

{

node_pointer w;

queue_pointer front, rear;

front = rear = NULL;

printf(“%5d”, v);

visited[v] = TRUE;

addq(&front, &rear, v);

adjacency list: O(e)

adjacency matrix: O(n2)

while (front) {

v= deleteq(&front);

for (w=graph[v]; w; w=w->link)

if (!visited[w->vertex]) {

printf(“%5d”, w->vertex);

addq(&front, &rear, w->vertex);

visited[w->vertex] = TRUE;

}

}

}

34

Connected Components

35

void connected(void)

{

for (i=0; i<n; i++) {

if (!visited[i]) {

dfs(i);

printf(“\n”);

}

}

}

adjacency list: O(n+e)

adjacency matrix: O(n2)

Topics

⦁ Sequential Search on an Unordered File

⦁ Sequential Search on an Ordered File

⦁ Binary Search

⦁ Bubble Sort

⦁ Insertion Sort

⦁ There are some very common problems that
we use computers to solve:

◦ Searching through a lot of records for a specific
record or set of records

◦ Placing records in order, which we call sorting

⦁ There are numerous algorithms to perform
searches and sorts. We will briefly explore
a few common ones.

⦁ A question you should always ask when
selecting a search algorithm is “How fast does
the search have to be?” The reason is that, in
general, the faster the algorithm is, the more
complex it is.

⦁ Bottom line: you don’t always need to use or
should use the fastest algorithm.

⦁ Let’s explore the following search algorithms,
keeping speed in mind.
◦ Sequential (linear) search

◦ Binary search

⦁ Basic algorithm:

Get the search criterion (key)

Get the first record from the file

While ((record != key) and (still more records))

Get the next record

End_while

⦁ When do we know that there wasn’t a record in
the file that matched the key?

⦁ Basic algorithm:
Get the search criterion (key)

Get the first record from the file

While ((record < key) and (still more records))

Get the next record
End_while

If (record = key)

Then success

Else there is no match in the file

End_else

⦁ When do we know that there wasn’t a record
in the file that matched the key?

⦁ Let’s do a comparison.

⦁ If the order was ascending alphabetical on
customer’s last names, how would the search
for John Adams on the ordered list compare
with the search on the unordered list?
◦ Unordered list

• if John Adams was in the list?

• if John Adams was not in the list?

◦ Ordered list

• if John Adams was in the list?

• if John Adams was not in the list?

⦁ How about George Washington?

◦ Unordered

• if George Washington was in the list?

• If George Washington was not in the list?

◦ Ordered

• if George Washington was in the list?

• If George Washington was not in the list?

⦁ How about James Madison?

⦁ Observation: the search is faster on an ordered
list only when the item being searched for is not
in the list.

⦁ Also, keep in mind that the list has to first be
placed in order for the ordered search.

⦁ Conclusion: the efficiency of these algorithms
is roughly the same.

⦁ So, if we need a faster search, we need a
completely different algorithm.

⦁ How else could we search an ordered file?

⦁ If we have an ordered list and we know how
many things are in the list (i.e., number of
records in a file), we can use a different
strategy.

⦁ The binary search gets its name because the
algorithm continually divides the list into two
parts.

Always look at the center
value. Each time you get
to discard half of the
remaining list.

Is this fast ?

⦁ Worst case: 11 items in the list took 4 tries

⦁ How about the worst case for a list with 32
items ?

◦ 1st try - list has 16 items

◦ 2nd try - list has 8 items

◦ 3rd try - list has 4 items

◦ 4th try - list has 2 items

◦ 5th try - list has 1 item

List has 250 items

1st try - 125
items

2nd try - 63 items

3rd try - 32 items

4th try - 16 items

5th try - 8 items

6th try - 4 items

7th try - 2 items

8th try - 1 item

List has 512 items

1st try - 256
items

2nd try - 128
items

3rd try - 64 items

4th try - 32 items

5th try - 16 items

6th try - 8 items

7th try - 4 items

8th try - 2 items

9th try - 1 item

⦁ List of 11 took 4 tries

⦁ List of 32 took 5 tries

⦁ List of 250 took 8 tries

⦁ List of 512 took 9 tries

⦁ 32 = 25 and 512 = 29

⦁ 8 < 11 < 16 23 < 11 < 24

⦁ 128 < 250 < 256 27 < 250 < 28

⦁ How long (worst case) will it take to find an
item in a list 30,000 items long?

210 = 1024

211 = 2048

212 = 4096

213 = 8192

214 = 16384

215 = 32768

⦁ So, it will take only 15 tries!

⦁ We say that the binary search algorithm runs in

log2 n time. (Also written as lg n)

⦁ Lg n means the log to the base 2 of some value
of n.

⦁ 8 = 23 lg 8 = 3 16 = 24 lg 16 = 4

⦁ There are no algorithms that run faster than lg
n time.

⦁ So, the binary search is a very fast search
algorithm.

⦁ But, the list has to be sorted before we can
search it with binary search.

⦁ To be really efficient, we also need a fast sort
algorithm.

Bubble Sort

Selection Sort

Insertion Sort

Heap Sort

Merge Sort

Quick Sort

⦁ There are many known sorting algorithms.

Bubble sort is the slowest, running in n2 time.
Quick sort is the fastest, running in n lg n

time.

⦁ As with searching, the faster the sorting
algorithm, the more complex it tends to be.

⦁ We will examine two sorting algorithms:

◦ Bubble sort

◦ Insertion sort

void bubbleSort (int a[] , int size)

{

int i, j, temp;

for (i = 0; i < size; i++) /* controls passes through the list */

{

for (j = 0; j < size - 1; j++) /* performs adjacent comparisons

*/

{

if (a[j] > a[j+1]) /* determines if a swap should

occur */

{

temp = a[j];

a[j] = a[j + 1];

a[j+1] = temp;

/* swap is performed */

}

}

}

}

⦁ Insertion sort is slower than quick sort, but
not as slow as bubble sort, and it is easy to
understand.

⦁ Insertion sort works the same way as
arranging your hand when playing cards.

◦ Out of the pile of unsorted cards that were dealt to
you, you pick up a card and place it in your hand in
the correct position relative to the cards you’re
already holding.

7

5 7

5 6

75

7

5 6 7

K

5 6 7 8 K

Unsorted - shaded

Look at 2nd item - 5.

Compare 5 to 7.

5 is smaller, so move 5
to temp, leaving

an empty slot in

position 2.

Move 7 into the empty

slot, leaving position 1

open.

Move 5 into the open

position.

7

7

57

5

7

K

5

7

v

>

<

1

2

3

Look at next item - 6.

Compare to 1st - 5. 6

is larger, so leave 5.

Compare to next - 7.
6 is smaller, so move
6 to temp, leaving an
empty slot.

Move 7 into the

slot, leaving position

open.

Move 6 to the open

2nd position.

tyemp

7

7

5

7

5

K5

7

v

>

<

1

22

3

6

7

65

6

5

Look at next item -

Compare to 1st - 5.

King is larger, so
leave 5 where

Compare to next -
King is larger, so

leave 6

Compare to next - 7.

King is larger, so

leave 7 where it is.

King.

it is.

6.

where it is.

7 K5 6

7

7

5

7

5 K

5

7

v

>

<

1

2

3

6 7

8

5

6

5

6

6

6

8

K 8

K

K 8

K

1

HASHING

Hashing Techniques:

Hashing:

• Hashing is a technique used to Performing
Insertion, deletion & search operations in the
constant average time by implementing Hash
table Data Structure .

• It is used to Index and Retrieve Items in a
Database.

2

Two Types of Hashing

1. Static Hashing .

2. Dynamic Hashing .

Static Hashing :

• It is the hash function maps search key value
to a fixed set of locations.

Dynamic Hashing :

• The Hash Table can grow to handle more
Items.The associated Hash Function must
Change as the table grows.

Hash Table :

• The Hash Table data structure is a array of
some fixed size table containing the Keys.

• A Key is a values associated with each record.

• A Hash table is partition into array of size.

• Each Bucket has many slots and each slots
holds one records.

Hash Function :

• A Hashing Function is a key to address
Transformation which acts upon a given Key to
complete the Relative Position of the Key in a
array 4

• A Key can be a member of a String etc..

• A Hash Function Formula is

• Hash (Key Value) =(Key Values % Table Size)

• Hash (Key Value)=Key Values % Table Size

• Hash(10) =10 % 5=0

• Hash(33) =33 % 5 =3

• Hash(11)=11 % 5=1

Hash(21)= 21 % 5=1

4

5

A Good Hashing consist of

• Minimum Collision.

• Be easy and quick to complete.

• Distribute Key Value Every in the Hash Table.

• Use all the Information Provided in the Key.

Application of Hash Table:

• Database Systems

• Symbol Tables .

• Data Dictionaries

• Network Processing Algorithm

• Browse Casher.

What is a Hash Table ?

The simplest kind of hash table
is an array of records.

This example has 701 records.

[0] [1] [2] [3] [4] [5]

An array of records

. . .

[700]

What is a Hash Table ?

Each record has a special field,
called its key.

In this example, the key is a
long integer field called
Number.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

Number 506643548

What is a Hash Table ?

The number might be a
person's identification
number, and the rest of the
record has information about
the person.

[0] [1] [2] [3] [4] [5]

. . .

[700]

[4]

Number 506643548

What is a Hash Table ?

When a hash table is in use,
some spots contain valid
records, and other spots are
"empty".

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

Inserting a New Record

In order to insert a new record,
the key must somehow be
converted to an array index.

The index is called the hash
value of the key.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

Number 580625685

Inserting a New Record

Typical way create a hash value:

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

Number 580625685

(Number mod 701)

What is (580625685 mod 701) ?

Inserting a New Record

Typical way to create a hash
value:

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

Number 580625685

(Number mod 701)

What is (580625685 mod 701) ?
3

Inserting a New Record

The hash value is used for the
location of the new record.

Number 580625685

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .

[3]

Inserting a New Record

The hash value is used for the
location of the new record.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685

Collisions

Here is another new record to
insert, with a hash value of 2.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685

Number 701466868

My hash

value is [2].

Collisions

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685

Number 701466868

When a collision

occurs,

move forward until you

find an empty spot.

Collisions

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685

Number 701466868

When a collision

occurs,

move forward until you

find an empty spot.

Collisions

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685

Number 701466868

When a collision

occurs,

move forward until you

find an empty spot.

Collisions

This is called a collision,
because there is already
another valid record at [2].

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

The new record goes

in the empty spot.

A Quiz

Where would you be placed in

this table, if there is no
collision? Use your social

security number or some other

favorite number.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322Number 580625685 Number 701466868

. . .

Searching for a Key

The data that's attached to a
key can be found fairly quickly.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

Searching for a Key

Calculate the hash value.

Check that location of the array for
the key.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Not me.

Searching for a Key

Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Not me.

Searching for a Key

Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Not me.

Searching for a Key

Keep moving forward until you
find the key, or you reach an
empty spot.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Yes!

Searching for a Key

When the item is found, the
information can be copied to the
necessary location.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Number 701466868

My hash

value is [2].

Yes!

Deleting a Record

Records may also be deleted from a hash table.

[0] [1] [2] [3] [4] [5] [700]

Number 506643548Number 233667136Number 281942902
Number 155778322

. . .
Number 580625685 Number 701466868

Please

delete me.

Deleting a Record

Records may also be deleted from a hash table.

But the location must not be left as an ordinary "empty
spot" since that could interfere with searches.

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902

Number 155778322

. . .
Number 580625685 Number 701466868

Deleting a Record

Records may also be deleted from a hash table.

But the location must not be left as an ordinary "empty
spot" since that could interfere with searches.

The location must be marked in some special way so that
a search can tell that the spot used to have something in
it.

[0] [1] [2] [3] [4] [5] [700]
Number 233667136Number 281942902

Number 155778322

. . .
Number 580625685 Number 701466868

Summary

 Hash tables store a collection of records with keys.

 The location of a record depends on the hash value
of the record's key.

 When a collision occurs, the next available location
is used.

 Searching for a particular key is generally quick.

 When an item is deleted, the location must be
marked in a special way, so that the searches know
that the spot used to be used.

Collision :

• Collision occurs when a hash values of a
records being Inserted hashes to an Address
That already contains a difference Record.

“ When Two Key values hash to the position”.

Insert 11,21 in hash table

11 =Hash(11) =11%5 =1

21= Hash (21) =21%5 =1

(collision occur)

31

32

Collision Resolution :

• The Process of finding another Position for
The Collide Record Is said to be collision
Resolution Strategy.

Two categories of Hashing .

1. Open Hashing

eg: Separate Chaining.

2. Closed Hashing .

eg : Open Addressing ,Rehashing and
Extendable hashing.

33

Open Hashing :

• Each Bucket in the Hash table is the head of a
Linked List.

• All Elements that hash to a Particular Bucket
are Placed on the Buckets Linked List .

Closed Hashing:

• Ensures that all elements are stored directly in
to the Hash Table.

34

Separate Chaining :

• Separate Chaining is an open hashing
Technique

• A Pointer fields is added to each record
Location.

• In this method the table can never overflow
since the linked are only extended upon or
New Keys.

Example:

10 , 11 , 81 , 10 , 7 , 34 , 94 , 17 , 29 , 89 , 99

35

36

The element 81 collides to the same of the hash
value to place the value 81 at this position perform
the following.

1. Traverse the list to check whether it is already
present.

2. Since, it is not already present, insert at end of the
list similarly, the rest of the elements are inserted.

Advantages:

 More number of elements can be inserted as it uses
of linked list.

 Collision resolution is simple and efficient.

37

Disadvantages:

It requires pointers, which occupies more
memory space.

Closed hashing:

• Collide elements are stored at another slot in
the table. Ensures that all elements stored
directly in the hash table.

Eg: Open addressing

Rehashing and extendable hashing.

MUTHAYAMMALENGINEERING COLLEGE
DEPARTMENTOF INFORMATIONTECHNOLOGY

38

MUTHAYAMMAL ENGINEERING COLLEGE

DEPARTMENTOF INFORMATION TECHNOLOGY

Subject Code:19ITC01

Subject Name: Data Structures

1

2

Open Addressing:

•

• Open addressing also called closed hashing
which is an attentive to resolve the collision with
linked list.

If a collision occurs, alternative cells are tried
until an empty cell is found (i.e) cells ho(x), h1(x),
h2(x) are tried in succession.

There are three common collision strategies,
there are

1. Linear Probing

2. Quadratic Probing

3. Double Hashing

1.Linear Probing:

Key value :18,70,65,51,13

Table size : 7

3

4

5

6

Rehashing:

•

• If the table get’s to full. Then the rehashing
method new tables that is about twice as with and
scan down the entire original hash table.

The entire original hash table, computing the
new hash value for each element and in sorting it in
the new table.

• Rehashing is very expensive operations, the
running time is O(N), Rehashing can be implements
is several ways with Quadratic probing such as

i). Rehash as soon as the table is half full.

7

• A new table is created as table so full. The size of the

table so full. The size of the table is 17, as this to the

first prime (i.e) a) twice as large as the old table size.

• The new hash function is h(x) = Xmod 17 the old

table is scanned and the elements, 6,15,24,23 and 13

are inserted into the new table.

8

9

Advantages:

Programmer does not about the table size.

Simple to implement.

It can be used in order data structure as well.

ii) Rehash only when an insertion fails. Suppose
the elements 13,15 ,23 ,24 & 6 are insert into
an open addressing hash table of size.

Hash function h(x) = x mod 7

10

If 23 is inserted into the Table ,the Resulting
Table Will be over 70% Full.

1) Insert 23:

Hash(23)=23%7

=2

Extendable Hashing:

• Extendable Hashing Allows a find to be
Performed in two disk accesses. Insertion
Also Requires few Disk accesses.

• Let us support consider our data consist of
determined by the leading two bits are the
data .

11

• In each leaf has upto m=4 elements ,identified
This is indicated by the number in Parenthesis.

12

13

14

Advantages:

• Provides quick access times for insert an find
operation on large database.

Disadvantages:

• This algorithm does not work if there are
more then m duplicates.

MUTHAYAMMALENGINEERING COLLEGE
DEPARTMENTOF INFORMATIONTECHNOLOGY

15

MUTHAYAMMAL ENGINEERING COLLEGE

DEPARTMENTOF INFORMATION TECHNOLOGY

Subject Code:19ITC01

Subject Name: Data Structures

1

2

Searching Algorithm:

Searching is method to search a data item in
the given set. There are two types of search.

There are

1.Linear Search

2. Binary Search

3

Linear Search:

• Linear search is used to search and data item
in the given set in the sequential manner
Starting from the first element it is also called
as Sequential Search.

Routine for Linear Search:

void linear search(int x, int a[], int n)

{

int flag=0,i;

for(i=0;i<n;i++)

{

4

if(x==a[i])

{

flag=1

break;

}

}

if(flag==1)

print f(“the element is found”);

else

print f(“the element is not found”);

}

Analysis of Linear Search :

• BEST CASE ANALYSIS:0(1)

• AVERAGE CASE ANALYSIS:0(N)

• WORST CASE ANALYSIS: 0(N)

Binary Search:

• Binary Search is used to Search an Item in a
Sorted list . In this Method ,Initialize the lower
Limit as 1 And Upper Limit as N(N-1)

• The middle position is computed as (Lower
+Upper)/2 and check the element in the
Middle Position with the Data item to be
Searched.

5

• If the data item is greater then are Middle
Value then the Lower limit Is adjusted to one
Greater then the middle value.

• Otherwise , The Upper Limit is adjusted to
One Less then the Middle Value Ex: X=25.

6

7

Routine For Binary search:

void binary search(int x,int a[],int n);

{

int lower,upper,mid ;

lower=1;

upper=n;

while(lower<upper)

{

mid=(lower+upper)/2;

if(x>a[mid])

lower=mid+1;

8

else if(x<a[mid])

upper=mid-1;

else

{

printf(“element is found”);

break;

}

}

}

9

Analysis;

• BEST CASE ANALYSIS: 0(1)

• AVERAGE CASE ANALYSIS:0(logN)

• WORST CASE ANALYSIS: 0(LogN)

MUTHAYAMMALENGINEERING COLLEGE
DEPARTMENTOF INFORMATIONTECHNOLOGY

10

MUTHAYAMMAL ENGINEERING COLLEGE

DEPARTMENTOF INFORMATION TECHNOLOGY

Subject Code:19ITC01

Subject Name: Data Structures

1

2

Def: Sorting is a

SORTING

Process (or) Technique of
Arranging a group or a Sequence of Data
Elements in an order either in ascending or
descending.

Two Types of Sorting:

1.Internal Sorting

2.External Sorting.

3

Internal Sorting:

• A sorting in which all records of the file to be
sorted should be within the main memory at
the time of sorting.

External Sorting:

• Sorting is which at the time of Sorting Some
Record of the file to be Sorted can be in the
secondary memory.

Internal Sorting:

1. Insertion Sort

2.Shell sort

4

3.Heap Sort

4.Quick Sort

5.Radix Sort

6.Bubble Sort

7.Selection Sort

External Sorting

1.Merge Sort

2.Two Way Sort

3.Multiple Way Merge Sort

4.Polyphase merge sort.

5

Insertion Sort:

• Insertion Sort Works by tasking element from
the list one by one and inserting them in their
current position into a new sorted list.

• Insertion sort consists of N-1 Passes Where N is
the number of element to be sorted .

• The ith Pass of insertion sort will insert the ith

• Element A*1+ , A*2+ ,….A*i-1] .After Doing this
Insertion the Record occupying A*1+,….A*i+ are
in sorted order.

Insertion and Routine:

void insertion sort (element type a[], int N)

{

int j, p ;

element type tmp ;

for(p=1; p<N ; p++)

{

tmp =a[p];

for (j=p ; j>0&& a[j-1]>tmp ;j--)

a[j] =a[j-1];

a[j]=tmp ;

} }
6

Example:

Consider an Unsorted array as Follows :

20, 10, 60, 40, 30, 15

Passes of Insertion Sort

7

8

Analysis of insertion Sort :

• WORST CASE ANALYSIS - O(N^2)

• BEST CASE ANALYSIS - O(N)

• AVERAGE CASE ANALYSIS -O(N^2)

9

Shell Sort :

• This method is an Improvement over the
Simple Insertion Sort .In this Method The
Element at Fixed Distance K (K is Preferably
prime Number) or compared .

• The distance will then be decremented by
Some fixed amount and again the Comparison
will be made . Finally Individuals elements will
be compared.

10

11

12

Quick Sort [Partition Exchange Sort]:

• The idea Behind This Sorting is Much easier In
the Two Sort List Rather Then One Long list.

• All The Element on the Left Side Of Pivot
Should Be Smaller Or Equal To The Pivot.

• All The Element On the Right Side Of Pivot
Should Should Be Greater Then Or Equal To
Pivot.

13

The Process for Sorting the Element Quick Sort
is as:

I. Take the First Element of List as Pivot .

II. Place At The Proper Place In List So one
Element of The List (i.e) Pivot will be at its
Proper Place.

III. Create two Sublist’s Left Child, Right Child of
Pivot.

IV. Repeat the same Process Until all element of
List are at Proper Position in List.

14

For Placing the Pivot at Proper Place we have a
Need to do The Following Process:

I. Compare the Pivot Element One by One From
Right to Left For Getting The Element Which
Has Value Less Then Pivot Element
.Interchange The Element With Pivot Element.

II. Now the Comparison will start from the
Interchanged element position from left to
right for getting the element which has higher
Value then Pivot.

III. Repeat the same process Until Process is at its
Proper position.

15

16

Now Combine 2 Sub list

8 19 29 42 48 59 65 68 72 82 88 95

All The Elements Are New Sorted.

Analysis of Quick Sort :

• WORST CASE ANALYSIS - O[N^2]

• BEST CASE ANALYSIS - O[N log N]

• AVERAGE CASE ANALYSIS – O[N log N]

Advantage :

• It is Faster than other O(N log N) algorithm.

• It has better cache Performance and High
Speed.

Limitations: Requires More Memory Space 17

18

Heap Sort :

• In heap sort the array of Interpret as a binary
Tree. This Method pass 2 Phases.

• In Phase 1: Binary heap is Constructed.

• In Phase 2: Delete min Routine is Performed.

Phase 1: Two Properties of Binary Heap :

 Structure Property .

 Heap order Property.

Structure Property :

• For Any Element in Array Position i , The Left
child is in 2i+1 (i.e) The Cell after the Left Child

19

Heap Order Property:

• The key Values in the parent Node is Smaller
then or equal to the key Value of any in its
Child node.

• To Build the Heap , apply the heap order
Property Starting from the Right Most Non –
Leaf Node at the Bottom level.

Phase 2:

The Array Element are Stored using Deletion
Operation.

Example :

20

21

22

23

Routine for Heap Sort :

#define left child [i] (2*(i)+1)

void perdown (element type A[] , int i , int N)

{

int child ;

element type tmp ;

for(tmp =A[i] , left child (i)<N , i=child)

{

child =left child (i);

if (child!=N-1&&A[child +]>A[child])

child ++ ;

24

if (tmp<A[child])

A[i]=A[child]);

else

Break ;

}

A[i] =tmp;

}

void heap sort(element type a[],int N)

{

int I;

for(i=N/2;i>=0 ; i--)

25

perdown (A ,i , N);

for(i=N-1; i>0; i--)

{

swap (&A[0] ,&A[i]);

per down (A,o,i);

}

}

}

Analysis of Heap Sort :

 Worst Case Analysis =O(N log N)

 Best case Analysis = O(N log N)

 Arg Case Analysis = O(N log N)

Advantages:

• It is efficient for Sorting Large number of
Element.

• It has the Add of Worst case.

Limitation :

• It is Not a stable Sort .

• It Require Most Processing Time .

27

Radix Sort :

• Radix Sort is one of the Linear Sorting
algorithm for Integers.

• It is generated from radix Sort.

• It can be performed using Bucket 0 to 9.

• It is also called as Binsort.

• In First Pass all element arranged according to
the least Significant digit. In Second Pass ,the
element are arranged according to the next
least significant digit and so on.

28

29

30

External Sorting
Merge Sort :

• The most common algorithm used in external
Sorting is the merge sort this algorithm
follows Divide and Conquer strategy.

Merge Sort Routine :

void Msort (element type A[], element type
tmparray [],int left ,int right)

int center ;

if (left<right)

{

31

center =(left +right)/2;

msort(A, tmp array, left ,center) ;

msort (A,tmp array , center , right) ;

merge (A , tmp array ,left ,center+1,right);

}

}

void merge sort (element type A[],int N))

{

element type *tmparray ;

tmparray =malloc(N*sizeof(element type));

32

if (tmparray!=NULL)

{

msort (A,tmparray,0,N++);

free(tmp array);

}

else

{

fatal error (“no sapce for tmp array”)

}

}

33

Merge Routine:

void merge(element type A[], element type
tmparray [], int LPOS , int RPOS , int rightend)

{

int I, leftend ,numelement , tmppos;

left end =RPOS-1;

TMPPOS =LPOS ;

num element = rightend –LPOS +1;

while (Lpos<=leftend && RPOS<=rightend)

if (A[LPOS] <=A[RPOS])

tmp array [tmppos++] =A[LPOS++];

34

else

tmp array [tmppos++]=A[RPOS++];

while(LPOS<=leftend)

tmparray [tmppos++] =A[LPOS++];

while(RPOS< =rightend)

tmparray [tmppos++] =A[RPOS++];

for(i=0; i<numelements; i++; rightend--)

A[rightend]=tmparray [rightend];

}

35

36

37

MUTHAYAMMALENGINEERING COLLEGE
DEPARTMENTOF INFORMATIONTECHNOLOGY

38

