

COURSE MODULES OF THE SUBJECT TAUGHT FOR THE ODD SESSION 2024

Course Syllabi with CO's

Faculty Name	:	Academic Year: 2024-25 (ODD SEMESTER)									
Department: Mathematics FOR Computer Science (BCS301)											
Course Code	Course Title	Core/Elective	Pre-requisite	Co Ho	ntact urs	Total Hrs/ Sessions					
				L	Т	Р	Sessions				
	Mathematics	G				-					
BCS301	for Computer	Core		3	2		40				
	Science										
	This course will enable the students to:										
	1. To introduce the concept of random variables, probability distributions, specific										
	discrete and continuous distributions with practical application in Computer										
Objectives	Science Engineering and social life situations.										
U	2. To Provide the principles of statistical inferences and the basics of hypothesis										
	testing with emphasis on some commonly encountered hypotheses.										
	3. To Determine whether an input has a statistically significant effect on the										
system's response through ANOVA testing.											
Topics Cover	ed as per Syllabu	S									
Module-1: Probability Distributions											
Probability Distributions: Review of basic probability theory. Random variables (discrete											
and continuous), probability mass and density functions. Mathematical expectation, mean and											
variance. Binomial, Poisson and normal distributions- problems (derivations for mean and standard deviation for Binomial and Boisson distributions only). Illustrative events											
Standard deviation for Binomial and Poisson distributions only)-illustrative examples.											
Module-2: Joint probability distribution & Markov Chain											
joint probability distribution: Joint Probability distribution for two discrete random											
variables, expe	ctation, covariance a	nd correlation.									
Markov Chain:	Introduction to Stoc	hastic Process, P	robability Vectors, Sto	ochastic	matr	ices,					
Regular stochas	stic matrices, Marko	v chains, Higher	transition probabilities	s, Statio	nary						
distribution of]	Regular Markov cha	ins and absorbing	states.								
Module-3: Sta	tistical Inference 1		- ('			C	_				
tost of significa	ampling distribution,	standard error, te	ing of attributes, test	evels of	Signi	ficanc	e,				
large samples	comparison of large	samples	ing of autoutes, test of	JI SIGIIII	icanc	e 101					
Module-4: Sta	tistical Inference 2	samples.									
Sampling varia	bles, central limit the	eorem and confid	ences limit for unknow	vn mea	n. Tes	st of					
Significance fo	r means of two smal	l samples, studen	ts 't' distribution, Chi	-square	distri	bution	1				
as a test of goodness of fit. F-Distribution.											
Module-5: Des	sign of Experiments	s & ANOVA									
Principles of experimentation in design, Analysis of completely randomized design,											
randomized block design. The ANOVA Technique, Basic Principle of ANOVA, One-way											
ANOVA, Two-way ANOVA, Latin-square Design, and Analysis of Co-Variance.											
List of Text H	Books										
1. Ralph P. Grimaldi and B V Ramana, Discrete and Combinatorial Mathematics- An Applied											
Introduction, Pearson Education, Asia, Fifth edition – 2007. ISBN 978-81-7758-424-0.											
2. Higher Engineering Mathematics B. S. Grewal Khanna Publishers 44th Edition, 2017											
List of Refere	ence Books										
1. Kenneth H. Sixth reprint 20	Rosen, Discrete Ma 008. ISBN-(13):978-	athematics and it 0-07-064824-1.	s Applications, Tata	– McG	raw]	Hill, S	Sixth Edition,				

2. C. L. Liu and D P Mohapatra, Elementary Discrete Mathematics, Tata- McGraw Hill, Sixth Edition,

ISBN:10:0-07-066913-9.								
3. J.P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer								
Science, Tata – McGraw Hill, 35TH reprint 2008. ISBN 13:978-0-07-463113-3.								
4. Advanced Engineering Mathematics C. Ray Wylie, Louis C.Barrett McGraw-Hill 6th Edition 1995								
5. Higher Engineering Mathematics B. V. Ramana McGraw-Hill 11th Edition, 2010								
6. A Text-Book of Engineering Mathematics N. P. Bali and Manish Goyal Laxmi Publications 2014								
7. Advanced Engineering Mathematics Chandrika Prasad and Reena Garg Khanna Publishing, 2018								
List of URLs, Text Books, Notes, Multimedia Content, etc								
http://nptel.ac.in/courses.php?dia	sciplineID=111							
http://www.class-central.com/subject/math(MOOCs)								
http://academicearth.org/								
http://www.bookstreet.in.								
VTU EDUSAT PROGRAMME	L - 20							
VTU e-Shikshana Program								
Course Outcomes:								
At the end of the c	At the end of the course, the student will be able to:							
1. Explain the	1. Explain the basic concepts of probability, random variables, probability							
distribution model	distribution models for the given scenario							
2. Apply the no	otion of a discrete-time Markov chain and n-step transition							
Course probabilities to sol	lve the given problem							
Outcomes 3. Use statistical	methodology and tools in the engineering problem-solving							
process								
4 Compute the co	4 Compute the confidence intervals for the mean of the population							
5 Apply the ANO	5 Apply the ANOVA test related to engineering problems							
5. Apply the Arto	VA test related to engineering problems							
Internal Assessment Marks [·] For	the Assignment component of the CIE, there are 25 marks							
and for the Internal Assessment Test component, there are 25 marks.								

Subject Code:	BCS301	BCS301 TITLE Mathematics for Computer Science							ulty me:				
List of	Program Outcomes												
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	Total
CO-1	2	3	-	-	-	-	-	-	-	-	-	2	7
CO-2	2	2	-	-	-	-	-	-	-	-	-	2	6
CO-3	2	3	-	-	-	-	-	-	-	-	-		5
CO-4	2	3	-	-	-	-	-	-	-	-	-	2	7
CO-5	2	3	-	-	-	-	-	-	-	-	-	2	7
Total	10	14	-	-	-	-	-	-	-	-	-	8	30

The Correlation of Course Outcomes (CO's) and Program Outcomes (PO's)

Note: 3 = Strong Contribution 2 = Average Contribution 1 = Weak Contribution